
Open OnDemand Engagement
Final Report

July 12, 2021

Distribution: Public

Authors: Tarun Anand, Diana Cimmer, Elisa Heymann, Ryan Kiser, Bart Miller,

Ian Ruh, Ritvik Bhawnani, Kelli Shute, John Zage

About Trusted CI

The mission of Trusted CI is to provide the NSF community with a coherent understanding of

cybersecurity, its importance to computational science, and what is needed to achieve and

maintain an appropriate cybersecurity program.

Acknowledgments

Trusted CI’s engagements are inherently collaborative; the authors would like to thank the Open

OnDemand team, including Alan Chalker, Eric Franz, Kyle Earley, Jeffrey Ohrstrom, Travis Ravert,

and Roy Sizemore for the collaborative effort that made this engagement and document

possible.

This document is a product of Trusted CI. Trusted CI is supported by the National Science

Foundation under Grant #1920430. For more information about Trusted CI, please visit:

http://trustedci.org/. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

Using & Citing this Work

This work is made available under the terms of the Creative Commons Attribution 3.0 Unported

License. Please visit the following URL for details:

http://creativecommons.org/licenses/by/3.0/deed.en_US

Cite this work using the following information:

T. Anand, D. Cimmer, E. Heymann, R. Kiser, B. Miller, I. Ruh, R. Bhawnani, K. Shute, and J. Zage,

"Trusted CI: Open OnDemand Engagement Final Report", NSF Cybersecurity Center of

Excellence, Trusted CI, trustedci.org, June 2021. Available: http://hdl.handle.net/2022/26590

This work and other engagement reports are available on the web at the following URL:

https://www.trustedci.org/reports

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

1

http://trustedci.org/
http://trustedci.org/
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://hdl.handle.net/2022/26590
https://www.trustedci.org/reports

Executive Summary

During this 6-month engagement, Trusted CI collaborated with Open OnDemand (OOD) to

develop internal OOD expertise with conducting vulnerability assessments using the FPVA

methodology and to incorporate key elements of the FPVA assessment process into their own

internal procedures. This will enable Open OnDemand to improve the project’s ability to

maintain the security of their software as changes are made and to identify and mitigate future

vulnerabilities. We focused on evaluating dependency and static analysis tools as well as the

vulnerability disclosure and remediation processes. The following report contains a summary of

the work performed during the engagement, our findings, and areas Open OnDemand should

consider for ongoing security and process improvements. This public version of the report has

had sensitive information removed.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

2

About Trusted CI 1

Acknowledgments 1

Using & Citing this Work 1

Executive Summary 2

1. Background 7

2. Factual Summary 7

2.1. Significant changes identified since prior engagement 7

2.2. Automated Assessment Tools 8

2.3. Current Vulnerability Disclosure Process 9

2.4. Code Review 10

3. Findings 11

3.1. Dependency Analysis Tools 11

3.1.1. How do dependency tools work? 11

3.1.2. Lockfiles 12

3.1.3. Command-line and web integration of dependency tools 13

3.1.4. Branches 14

3.1.5. Vulnerability suppression 15

3.1.6. How to run dependency tools 15

3.1.7. Comparison of dependency tools 16

3.1.8. Pricing considerations 16

3.2. Static Analysis Tools 17

3.2.1. How do static analysis tools work? 17

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

3

3.2.2. Code formatting and minified files 18

3.2.3. False positives 18

3.2.4. Tool configuration 19

3.2.5. Running static analysis tools 20

3.2.5.a. Commands used for JavaScript Tools 20

3.2.5.b. Commands used for Ruby Tools 23

3.2.6. Comparison of static analysis tools for JavaScript 24

3.2.7. Comparison of Static Analysis Tools for Ruby 25

3.2.8. Pricing considerations 25

3.3. Vulnerability Disclosure Processes 25

3.3.1. Community interactions and expectations 26

3.3.2. Roles and responsibilities 27

3.3.3. Procedures 27

3.4. Procedural Improvements & Effectively Utilizing Assessment Outputs 28

3.4.1. GitHub pull request templates to capture important context by default 28

3.4.2. Identify sensitive processes and catalog them in a software bill of materials 28

3.4.3. Consistent change processes 29

4. Recommendations 29

4.1. Dependency Analysis Tools 29

4.2. Static Analysis Tools 30

4.2.1. Recommendation for JavaScript 30

4.2.2. Recommendation for Ruby 30

4.3. Addressing Gaps in Vulnerability Disclosure Processes 30

4.3.1. Community interactions and expectations 30

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

4

4.3.1.a. Aligning with responsible disclosure practices. 31

4.3.1.b. Communications 31

4.3.1.c. Confidentiality 31

4.3.1.d. Report assignment 31

4.3.1.e. Report handling consistency 32

4.3.2. Roles and responsibilities 32

4.3.3. Procedures 32

4.4. Procedural Improvements & Effectively Utilizing Assessment Outputs 33

4.4.1. Develop a GitHub pull request template to capture important context 33

4.4.2. Identify sensitive processes and catalog them in a software bill of materials 33

4.4.3. Consistent change processes 33

5. Conclusion 34

Appendix A: Lines of Code Analysis at version v1.8.19 35

Appendix B: Comparison of Dependency Tools 36

Appendix C: Comparison of Static Analysis Tools 39

Subset of the results from static analysis tools for JavaScript when applied to the formatted
Open Ondemand code at commit 4541d6b. 40

All results from static analysis tools for Ruby when applied to the Open Ondemand code at
commit 4541d6b. 45

Appendix D: Architectural and Resource Diagrams 50

Authentication Flow 50

Dashboard App Flow 52

Dev App Flow 54

Linux Host Adapter Flow 56

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

5

NGINX Cron Job Flow 58

Shared App Flow 60

Shell Session Flow 62

VNC App Flow 64

Appendix E: Vulnerability Reporting Process Sample Text 66

Appendix F: Security Checklists 67

Pull request checklist - Security issues 67

Release Tasks 68

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

6

1. Background

Open OnDemand is funded by NSF OAC and is an open-source HPC portal based on the original1

OnDemand portal developed at Ohio Supercomputer Center. The goal of Open OnDemand is to2

provide an easy way for system administrators to provide web access to their HPC resources.

Open OnDemand is now facing increased community adoption. As a result, it is becoming a

critical production service for many HPC centers and clients.

Trusted CI began this engagement with Open OnDemand to support their efforts to further

develop the project’s ability to produce secure software. Trusted CI conducted an in-depth

vulnerability assessment in 2018, applying the First Principles Vulnerability Assessment (FPVA)

methodology to Open OnDemand software to identify vulnerabilities and provide3

recommendations for how to address them. The results of this prior assessment helped to

inform the activities of this engagement. During the course of the prior vulnerability assessment

using the FPVA methodology, Trusted CI staff worked directly to test Open OnDemand’s

software to identify vulnerabilities with support from the Open OnDemand team.

2. Factual Summary

The sections below describe the primary activities conducted in support of the 2021

engagement. These are followed in Sections 3 and 4 by descriptions of our findings and

recommendations, respectively.

2.1. Significant changes identified since prior engagement

Trusted CI engaged with Open OnDemand and performed an in-depth vulnerability assessment

of the code base using FPVA in 2018. At the beginning of this current engagement, we

collaborated with the Open OnDemand team to identify the major changes or additions to the

code base since that engagement. Five primary changes were identified and are summarized

below.

1) Linux host adapter

The linux host adapter that was added by the Open OnDemand team allows running

jobs and programs that are not amenable to being run by traditional HPC schedulers,

3 James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, “First Principles Vulnerability Assessment”,
2010 ACM Cloud Computing Security Workshop (CCSW), Chicago, IL, October 2010.

2 https://www.osc.edu/

1 https://openondemand.org/

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

7

http://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf
https://www.osc.edu/
https://openondemand.org/

including IDEs and desktop environments. It also allows Open OnDemand to work with

hosts that do not have a supported scheduler installed.

2) SSH Wrapper

A mechanism to manage SSH connections to compute nodes was proposed by an Open

OnDemand community member and merged into the repository. The wrapper allows

operators of Open OnDemand instances to customize how SSH connections are routed

to compute nodes. For example, if one login node is used for multiple clusters, this lets

the center route SSH connections to the correct cluster.

3) Authentication providers

The default authentication provider for Open OnDemand was changed from Basic Auth

to Dex.4

4) Nginx pre hook

A ‘hook’ was added to allow scripts to run immediately before the creation of a per-user

Nginx (PUN) instance. This allows additional events to be triggered, such as mounting a

user’s home directory.

5) Balance shown in the dashboard

The ability to show a user’s and/or a project’s remaining compute balance was added to

the dashboard.

2.2. Automated Assessment Tools

At the beginning of the engagement, the Open OnDemand team indicated that their current use

of automated assessment tools was limited to Dependabot for dependency checking and5

ShellCheck for basic analysis of shell scripts. They further indicated that there were some6

limitations of Dependabot, specifically its ability to assess multiple branches of the same

repository, that they were interested in trying to resolve. The Trusted CI team performed

comparisons of different automated dependency tools and of different static analysis tools for

both Ruby and JavaScript.

6 https://github.com/koalaman/shellcheck

5 https://dependabot.com/

4 https://github.com/dexidp/dex

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

8

https://github.com/koalaman/shellcheck
https://dependabot.com/
https://github.com/dexidp/dex

Based on the lines of code analysis of the main OnDemand repository (Appendix A), the two7

primary languages used were found to be Ruby and JavaScript. For both languages, a set of both

open source and commercial tools to compare were selected based on their usage by other

projects and their maintenance history (only applicable to open source tools). The Ruby static

analysis tools selected for comparison were Brakeman, DawnScanner, Semgrep, DeepSource,8 9 10

SonarQube, and Codacy. The JavaScript static analysis tools selected for comparison were11 12 13

ESLint, JSHint, Semgrep, DeepScan, Codacy, and SonarQube.14 15 16

For the comparisons of tools for both languages, each tool was run on the main OnDemand

repository and the issues reported were collected. For each issue reported by a tool, we

determined whether or not the issue was a false positive or if it was likely an issue. In some

cases, we were not able to determine the relevancy of the reported issue due to the depth of

understanding of the codebase it would require.

The findings of our comparisons are covered in Sections 3.1 and 3.2, and the derived

recommendations are in Sections 4.1 and 4.2 respectively.

2.3. Current Vulnerability Disclosure Process

When requested, Open OnDemand staff characterized their current vulnerability reporting and

management processes as follows:

1. Vulnerabilities and security concerns are reported by sending a message to the

ood-users@lists.osc.edu mailing list.

2. Messages to the list are reviewed before distribution by Alan Chalker, Eric Franz, and Jeff

Ohrstrom. Any messages regarding security concerns or vulnerabilities are held until17

triage is completed.

a. Team members will occasionally receive reports directly. When this occurs, the

team member forwards it to Eric and Jeff.

17 Note that Eric Franz left the project in May.

16 https://deepscan.io/

15 https://jshint.com/

14 https://eslint.org/

13 https://www.codacy.com/

12 https://www.sonarqube.org/

11 https://deepsource.io

10 https://semgrep.dev/

9 https://github.com/thesp0nge/dawnscanner

8 https://brakemanscanner.org/

7 https://github.com/OSC/ondemand

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

9

https://deepscan.io/
https://jshint.com/
https://eslint.org/
https://www.codacy.com/
https://www.sonarqube.org/
https://deepsource.io
https://semgrep.dev/
https://github.com/thesp0nge/dawnscanner
https://brakemanscanner.org/
https://github.com/OSC/ondemand

b. Vulnerability reports are given high priority and investigated immediately.

3. Once an RPM is available for the updated version the user community is notified

through the ood-users@lists.osc.edu mailing list and through an announcement on

Open OnDemand’s Discourse forum.18

4. The Open OnDemand team expects to remediate identified vulnerabilities within two

weeks.

2.4. Code Review

First Principles Vulnerability Assessment is an analyst-centric (manual) methodology that aims

to focus the analyst’s attention on the part of the software system and its resources that are

most likely to contain vulnerabilities and that would provide access to high-value assets. FPVA

finds new threats to a system and is not dependent on a list of known threats. The FPVA

methodology consists of five steps for evaluating a given piece of software.

1. Architectural Analysis: Determine the major structural components of the system and

how they interact. At this point, we produce architectural diagrams that illustrate the

structure of the system.

2. Resource Identification: Identify key resources accessed by each component. Examples

of these resources include files, databases, logs, and devices. The resource diagrams that

are produced illustrate these resources and their connection to system components.

3. Trust and Privilege Analysis: Identify the trust assumptions about each component,

answering such questions as how they are protected and who can access them.

Associated with trust is describing the privilege level at which each executable

component runs. The artifact produced at this stage is a further labeling of the basic

diagrams with trust levels and labeling of interactions with delegation information.

4. Component Evaluation: Examine relevant components in depth. A key aspect of the

FPVA methodology is that this step is guided by information obtained in the first three

steps, helping to prioritize the work so that high value targets are evaluated first.

5. Dissemination of Results: When we perform an assessment using FPVA methodology,

we create a report for each vulnerability found and include identified bugs as well as

areas that have been investigated but where no bugs or vulnerabilities were found. We

then disseminate the final report to the requesting parties (i.e., the lead of the

development team).

18 https://discourse.osc.edu/c/open-ondemand/announcements

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

10

https://discourse.osc.edu/c/open-ondemand/announcements

From the start of this engagement, our goal was not to perform a second FPVA for the Open

OnDemand team but to assist them in learning to conduct the assessments on their own.

Throughout the engagement we provided them feedback as they constructed and refined the

architectural and resource diagrams, all of which are included in Appendix D at the end of this

report. Going into step four of the assessment, component evaluation, we suggested to the

Open OnDemand team a list of potential issues to examine in the code (included in Appendix

D). Had Trusted CI been performing the assessment, that would have been the starting points

for our detailed code analysis.

Throughout the engagement, it was the intent of the Trusted CI team to provide the Open

OnDemand team with the relevant knowledge and background on the FPVA methodology to

continue to utilize it beyond the end of the engagement.

3. Findings

3.1. Dependency Analysis Tools

Dependency checking tools are commonly employed to ensure the continued security of a

project’s dependencies as new vulnerabilities are found over time. Due to their widespread use,

most common languages are supported by at least one dependency tool. For this engagement,

the Trusted CI team identified and assessed a variety of tools that report vulnerable

dependencies for JavaScript and Ruby projects. The dependency tools assessed were identified

based on their popularity and their integration with continuous integration (CI) tooling. We

assessed and compared the results obtained by Dependabot, Snyk, Depfu, and OWASP19 20 21

Dependency-Check when applied to the Open OnDemand code.22

The following sections describe the different aspects of these dependency tools that were used

in our comparison and selection process.

3.1.1. How do dependency tools work?

A primary attribute of a dependency analysis tool is the sources of information it uses for

vulnerabilities. As a dependency tool relies on associating a certain version of a piece of

software with a vulnerability, it is essential that the tool has access to as complete a list of

22 OWASP Dependency-Check

21 Depfu

20 Snyk

19 Dependabot

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

11

https://owasp.org/www-project-dependency-check/
https://depfu.com/
https://snyk.io/
https://dependabot.com/

known security issues as possible. One of the most common sources is the National

Vulnerability Database (NVD), which, of the tools we assessed, is used by Dependabot, Snyk,23

and OWASP Dependency-Check. The NVD records Common Vulnerabilities and Exposures (CVEs)

that are assigned to a specific vulnerability that is found in some range of versions of a piece of

software. However, not all vulnerabilities are assigned a CVE, so many tools rely on other

sources of information as well. Dependabot, Snyk, and OWASP Dependency-Check all use the

NPM Security Advisory database, which tracks vulnerabilities found in NPM packages, in24

addition to the NVD. Furthermore, both Dependabot and Snyk use internal databases of

vulnerabilities; Dependabot, as it is owned by GitHub, checks for relevant GitHub Security

Advisories that apply to the code, and Snyk uses a proprietary collection of vulnerabilities that

they maintain. Unfortunately, it is not clear what sources of information are used by Depfu.

To identify the versions of software dependencies used in a project, dependency tools scan the

frameworks and libraries, including transitive dependencies, used throughout the codebase,

and then compare the versions used to the versions known to have vulnerabilities. The build

systems used by Open OnDemand for both Ruby and JavaScript rely on manifest files that list

the dependencies required by the project and allow the build system to resolve the required

versions and fetch them from a package repository automatically, rather than require a

developer to do so manually. Manifest files may specify specific versions that are required (e.g.

3.2.1.) or there may be a list of versions that are compatible (e.g., 3.x). To determine the actual

version that is used by the project, dependency tools depend on the build tool to resolve the

versions specified in the manifest file to specific versions in a lock file, detailed in Section 3.1.2.

3.1.2. Lockfiles

Manifest files like package.json contain information about a project's dependencies and

versions using semantic versioning. These versions indicate to the build tool how to handle

future package updates. When a package author publishes a new version of their package, the

package manager will install the most recent version at build time. This update mechanism can

result in versioning inconsistencies in the application's dependencies across different

developers.

To combat this issue, lockfiles are used to install the exact same versions of packages so that

subsequent installs are identical. Thus, lockfiles capture the exact dependency tree used by the

24 NPM Security Advisory

23 National Vulnerability Database (NVD)

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

12

https://www.npmjs.com/advisories
https://nvd.nist.gov/

project. Lockfiles help dependency tools gain a more accurate picture of the project and

increase the reliability of their reports.

3.1.3. Command-line and web integration of dependency tools

The tools that we have assessed have two types of integrations: command-line and web. A

command-line integration scans for vulnerabilities in projects on the user’s local machine. The

tool uses the build environment to determine the actual packages used by the project. On the

other hand, a web integration scans for vulnerabilities in a repository found on a repository

hosting service like GitHub. Unlike command-line integration, a web integration cannot access

the user's build environment.

Dependency tools with command-line integration can access more information about a project,

such as private dependencies and the specifics of the build environment. Private dependencies

are dependencies that are not open source and require authentication. The CLI can access these

dependencies because the build tool for a project can access them using credentials in the

environmental variables. Tools with web integration only have access to the project's

dependency files and try to mimic the operation of the build tool. Thus, the vulnerability reports

from a command-line integration can be more accurate.

Both Depfu and Dependabot only provide web integration. OWASP Dependency-Check provides

a command-line integration, and Snyk provides a command-line and web integration.

To illustrate the difference between web and command-line integration, Figure 1 shows the

ways Snyk can be used when applied to the Open OnDemand code. The outermost group shows

the number of vulnerabilities found by Snyk’s web integration and includes dev dependencies.

The middle group shows the number of vulnerabilities found by Snyk’s web integration

excluding devDependencies. Last, the innermost group shows the number of vulnerabilities

found by Snyk’s command-line integration excluding devDependencies.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

13

Figure 1. Venn diagram of the different ways Snyk can be used
when applied to the Open OnDemand code

3.1.4. Branches

Currently, the Open OnDemand team receives alerts only for vulnerabilities on the main branch.

Both Snyk and OWASP Dependency-Check's command-line integration can scan the checked-out

branch of a repository, which allows users to find and fix vulnerabilities in multiple branches.

Snyk’s web integration finds vulnerabilities only in the default branch; support for multiple

branches is in beta.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

14

3.1.5. Vulnerability suppression

Suppressing vulnerabilities carries a high level of risk and is generally not recommended.

Nevertheless, there may be reasons for ignoring vulnerabilities. For example, a vulnerability may

be a false positive or does not have a suitable remediation strategy yet.

Both Snyk and OWASP Dependency-Check support suppressing specific packages, directories,

and package managers.

DevDependencies are packages only used during the development of a project and not at

runtime. We recommend suppressing devDependencies where possible. Snyk provides an

option to ignore devDependencies. Figure 1 shows the difference between including and

excluding devDependencies when Snyk is applied on the Open OnDemand code. Currently,

OWASP Dependency-Check does not provide an option to skip devDependencies for yarn

projects.

3.1.6. How to run dependency tools

Below are the commands we used for each tool when applied to the Open OnDemand code at

version v1.8.19.

● Dependabot:

Used GUI and permitted the tool to access the GitHub repository.

● Snyk:

snyk test --all-projects --detection-depth=100 --json-file-output=snyk.json

● Depfu:

Used GUI and permitted the tool to access the GitHub repository.

● OWASP Dependency-Check:

dependency-check.bat --project "Open OnDemand" --scan "." --bundleAudit

'bundle-audit.bat' --yarn 'yarn.cmd'

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

15

3.1.7. Comparison of dependency tools

Dependabot Snyk (CLI) Depfu
OWASP

Dependency-Check

High 3 31 0 28

Medium 2 30 0 26

Low 0 5 0 14

No Severity Provided 0 0 7 0

Total Errors 5 66 7 68

Unique Errors 3 40 3 35

Table 1. Comparison of the number of vulnerabilities reported by each tool when applied to
the Open OnDemand code at version v1.8.19

We identified significant differences in package names, error identifiers, and severities reported

by each tool when applied to the Open OnDemand code. First, Dependabot's and Depfu's

results are relatively sparse and fail to identify several high severity vulnerabilities. Table 1

compares the number of vulnerabilities found by each tool.

Second, OWASP Dependency-Check reports several vulnerabilities using NPM identifiers rather

than CVE identifiers. NPM identifiers may not always have a one-to-one correspondence with

CVE identifiers. This disparity made it challenging to compare tools using the identifiers alone.

Third, Depfu does not provide any severity information. Severity levels help organizations

prioritize resources towards high-risk vulnerabilities.

For these reasons, we created a table (Appendix B) that compares the tools based on the

vulnerable packages they reported. Each row in the table shows the corresponding identifiers

and severity for a package. For example, row 2 of Appendix B indicates that Dependabot, Snyk,

and Depfu identified actioncable as a vulnerability. Moreover, only Dependabot and Snyk

reported it as a high severity vulnerability.

3.1.8. Pricing considerations

Snyk Web provides unlimited tests for public open-source repositories. CLI projects are treated

as private repositories and are limited to 200 tests per month. OWASP Dependency-Check is an

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

16

open-source and free tool. Dependabot is a free tool that is integrated in GitHub. Depfu

provides unlimited tests for public open-source repositories.

3.2. Static Analysis Tools

Static analysis tools are commonly employed in continuous integration (CI) workflows and help

detect poor coding style, potential errors, and security flaws in the project. Due to their

widespread use, many common languages are supported by at least one static analysis tool. For

this engagement, the Trusted CI team identified and assessed a variety of tools that report

security issues for JavaScript and Ruby. The static analysis tools assessed were selected based

on their popularity and their integration in CI workflows. We compared the results produced by

these tools when applied to the Open OnDemand code at commit 4541d6b. For JavaScript, files

we compared Semgrep, Codacy, and SonarQube; for Ruby files we compared Semgrep,

Brakeman, DawnScanner, and DeepSource.

The following sections describe the different aspects of these static analysis tools used in our

comparison and selection process.

3.2.1. How do static analysis tools work?

A primary attribute of a static analysis tool is the set of language-specific rules and patterns it

uses to search for style, error-prone, and security issues in a project. In this engagement, we

mainly focused on security issues. A reliable tool defines rules that align with industry standards

and incorporate rules that find security issues in the languages it supports. The tools we have

assessed primarily rely on the developer community to create and maintain rules. Open source

tools like Semgrep, Brakeman, and DawnScanner use contributions from developers and

commercial tools like Codacy, SonarQube, and DeepSource use community forums to manage

rules. Additionally, Codacy and Semgrep use built-in tools and plugins to increase their

coverage, as detailed in Section 3.2.4.

Unlike dynamic analysis, static analysis tools do not execute the source code. As a result, these

tools may not have complete visibility into a project’s execution environment. Moreover, some

tools do not perform as comprehensive or semantic analysis as other tools, returning many false

positives, detailed in Section 3.2.3. The tools that we assessed also provide suppression

capabilities and support custom rules to reduce unreliable and unactionable issues.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

17

3.2.2. Code formatting and minified files

Tool
Number of Security Issues Before

Formatting
Number of Security Issues After

Formatting

Codacy 19 830

SonarQube 10 18

Table 2. Comparison of the number of security issues reported by Codacy and SonarQube
before and after formatting the Open OnDemand code at commit 4541d6b

While assessing static analysis tools for JavaScript files, we discovered that code formatting

profoundly affects the number of results found by some static analysis tools. Code formatting

organizes expressions into different lines without changing its functionality. Without formatting

the code, some static analysis tools report a lower number of security issues. The Open

OnDemand code was formatted using the Prettier tool. Table 2 compares the number of25

security issues returned by Codacy and SonarQube when applied to the original repository and

formatted repository. For both tools, the security issues from the non-formatted code are a

subset of the security issues from the formatted code.

This problem is amplified when tools analyze minified JavaScript files, which contain large26

amounts of code on the same line. Minification is the process of removing unnecessary

characters from the source code without changing its functionality. The process is needed to

improve web performance and results in smaller file sizes. Minified files also make it challenging

to understand and resolve reported security issues because of its optimizations to functions and

variables. Minified files create a local burden for tracking and applying updates. Open

OnDemand uses about 208 minified files imported from Ace Editor. Those files haven't been27

modified in a long time, and entail security risks, as they are not maintained.

3.2.3. False positives

Codacy calls other static analysis tools, and Semgrep uses plugins with rules from other tools to

analyze a codebase. These tools are configurable and can be adapted to meet an organization's

coding standard. ESLint is one of the tools used by Codacy and Semgrep. It contains rules that

identify poor coding practices and security issues in JavaScript code. While all the tools we

assessed report false positives, ESLint appears to have a limited understanding of the code’s

27 Ace Editor

26 Why minify JavaScript code? - Cloudflare

25 Prettier

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

18

https://github.com/ajaxorg/ace
https://www.cloudflare.com/learning/performance/why-minify-javascript-code/
https://prettier.io/

context and triggers a higher number of false positives. Understanding and resolving an

overwhelming number of results consumes a significant amount of time and hides true

positives. Moreover, if most of these results are false positives, this tool can negatively impact

the team’s productivity. Instead, using a tool that is able to examine the context of the code and

tracks data flow can reduce the number of false positives.

3.2.4. Tool configuration

The static analysis tools that we assessed provide multiple configuration options to reduce false

positives and unactionable results. Semgrep offers both a GUI and CLI that allow users to

exclude files and directories, specify which rulesets to use, build custom rules, and specify

which language and frameworks to analyze. Additionally, Semgrep also provides rules ported

from open-source security tools like ESLint. These configurations offer users flexibility but also

make Semgrep challenging to set up. In our comparison, we used 2 rulesets for JavaScript and 1

ruleset for Ruby.

SonarQube offers a GUI that allows users to filter results by issue type, severity, and language.

Furthermore, it supports custom rules and importing third-party rulesets.

Codacy offers a GUI and CLI that allows users to exclude files and directories, specify which

language and frameworks to analyze, and build custom rules. Furthermore, this tool allows

users to incorporate and configure a variety of sub-tools like ESLint and Brakeman to increase

their issue coverage.

Brakeman is a CLI tool that allows users to exclude files and directories, filter issues by

confidence level, and exclude certain rules.

DawnScanner is a CLI tool that allows users to restrict certain checks like code-style issues. Due

to the way DawnScanner operates, it was necessary to run the tool on each app in Open

OnDemand individually.

DeepSource is a CLI tool that allows users to exclude files and directories in its configuration file.

Unlike Dependency Tools, running a tool on a GUI or CLI does not impact the reliability of the

results. A GUI integration offers a more user-friendly experience with collaboration tools,

background notifications, and interactive graphs and diagrams. Additionally, it is simpler to

make configuration changes in a GUI.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

19

3.2.5. Running static analysis tools

3.2.5.a. Commands used for JavaScript Tools

Below are the commands we used for each JavaScript tool when applied to the Open

OnDemand code at commit 4541d6b.

● Semgrep (ESLint plugin):

docker run --rm -v "${PWD}:/src" returntocorp/semgrep --lang=js
--config=p/eslint-plugin-security --json -o semgrep-test.json ./

● Semgrep (filtered JavaScript ruleset):

Used GUI with filtered pre-written rules. Figure 2 shows how we added a new ruleset or

policy using Semgrep’s GUI.

Figure 2. Search page of Semgrep’s GUI showing 140 rules after filtering all the pre-written

rules by the JavaScript language and security category

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

20

● Codacy:

Used GUI with the automatically selected built-in tools. Figure 3 shows all the built-tools

that were used by Codacy when applied to the Open OnDemand code.

Figure 3. Built-in tools automatically selected by Codacy during the setup process for the

Open OnDemand code

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

21

● SonarQube:

Used GUI which was setup using Sonarqube’s docker container. The repository was

added manually by creating a token (as shown in Figure 4) and running the docker

command provided in step 2 of ‘Analyze your project’. This command is shown below.

sonar-scanner \
-Dsonar.projectKey=<key> \
-Dsonar.sources=. \
-Dsonar.host.url=http://localhost:9000 \
-Dsonar.login=<token>

Figure 4. SonarQube’s token creation step

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

22

● We looked at the Security Hotspots and Security Vulnerabilities to review the security

issues found. Figure 5 shows the menu items and filters for the same.

Figure 5. Security Hotspots (left) and Security Vulnerabilities (right) on the SonarQube GUI

3.2.5.b. Commands used for Ruby Tools

● Semgrep

docker run --rm -v "${PWD}:/src" returntocorp/semgrep --lang=rb --config=r/ruby
--json -o semgrep-test.json ./

● Brakeman

docker run -v "$(pwd)”:./ presidentbeef/brakeman -o brakeman_results.html

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

23

● DawnScanner

Due to the way DawnScanner operates, it was necessary to run it on each app with the

commands shown below.

dawn --html --file dawn_scanner.html --disable-code-quality
--disable-code-style ./
dawn --html --file dawn_scanner_activejobs.html --disable-code-quality
--disable-code-style apps/activejobs/
dawn --html --file dawn_scanner_dashboard.html --disable-code-quality
--disable-code-style apps/dashboard/
dawn --html --file dawn_scanner_file-editor.html --disable-code-quality
--disable-code-style apps/file-editor/
dawn --html --file dawn_scanner_myjobs.html --disable-code-quality
--disable-code-style apps/myjobs/
dawn --html --file dawn_scanner_ood-portal-generator.html
--disable-code-quality --disable-code-style ood-portal-generator/

● DeepSource

Used GUI and permitted the tool to access the GitHub repository. To share the Open

OnDemand repository, a private copy was made on GitHub and shared with DeepSource.

3.2.6. Comparison of static analysis tools for JavaScript

Semgrep

Semgrep
(alternate

ruleset) SonarQube Codacy

Total Issues (Style, Error-prone, and Security
Issues)

48 887 ~40,000 ~20,000

Number of Security Issues 48 887 18 830

Number of files with Security Issues 18 181 11 206

Table 3. Comparison of the number of issues found by JavaScript tools when applied to the
formatted Open OnDemand code at commit 4541d6b

We identified notable differences in the number and type of security issues reported by each

tool when applied to the Open OnDemand code. Furthermore, we formatted this code in our

analysis to account for the significant number of minified JavaScript files.

First, Semgrep and Codacy contain an overwhelming number of false positives. This problem

can make understanding and resolving security issues frustrating and confusing. On the other

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

24

hand, SonarQube reports relatively fewer results and includes probable security issues.

Additionally, it provides examples and helpful links to better understand the issues.

Appendix C (Tables C1 to C4) shows the security issues and their classifications from our

assessment of JavaScript static analysis tools. Due to a large number of results from Codacy and

Semgrep (with alternate ruleset), we could not evaluate and classify all of them; however, we

included their most prominent security issues along with their classifications.

3.2.7. Comparison of Static Analysis Tools for Ruby

Brakeman DawnScanner Semgrep DeepSource

Total Issues (Style, Error-prone, and Security
Issues)

24 9 67 5

Number of Security Issues 24 9 67 5

Number of files with Security Issues 12 5 49 5

Table 4. Comparison of the number of issues found by Ruby tools when applied to the Open
OnDemand code at commit 4541d6b

Like with JavaScript tools, we identified notable differences in the number and type of security

issues for Ruby tools. Additionally, each tool reports at least one probable security issue.

As before, Semgrep struggles to understand the context of the code and is difficult to evaluate.

Despite reporting the highest number of security issues, most of these reports are false

positives.

Appendix C (Tables C5 to C8) shows all the security issues and their classifications from our

assessment of Ruby static analysis tools.

3.2.8. Pricing considerations

Semgrep, Brakeman, and DawnScanner are free and open-source tools. SonarQube, Codacy,

and DeepSource are commercial tools that provide a free tier for open-source projects.

3.3. Vulnerability Disclosure Processes

During this engagement we identified several opportunities for Open OnDemand to improve

their vulnerability disclosure processes.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

25

3.3.1. Community interactions and expectations

Vulnerability reports may contain sensitive information and should not be disclosed publicly

until users of the software are able to prevent exploitation on their systems. The existing

practices noted in Section 2.3. introduce risk of premature disclosure. Although the ood-users

mailing list is moderated by staff and messages must be approved before distribution to the

public list, the opportunity still exists to distribute vulnerabilities to the list. This could occur

inadvertently by an authorized user sending the wrong command to the list system, but it also

introduces opportunities for disclosure due to misconfiguration of the mailing list, the mailing

list host system, or even deliberate abuse by an insider. Open OnDemand can easily address this

by changing their reporting processes such that initial reports are to be directed to Open

OnDemand staff rather than a moderated public mailing list. Specific recommendations are

provided in Section 4.3.1. of this report.

A patch to open source software will necessarily disclose technical details of the flaw being

patched. As Open OnDemand is deployed at a wide variety of research institutions, such details

of a vulnerability in Open OnDemand are valuable to attackers targeting research infrastructure.

Research operations using Open OnDemand could benefit from advance notice through a

non-public channel dedicated to security communications with this key set of stakeholders so

that they can be prepared to apply necessary security patches as soon as possible. The Open

OnDemand team currently does not have a formal capability to provide this advance notice,

although the necessary community interaction mechanisms to do so, such as the Open

OnDemand Discourse web forum, are available.

Open OnDemand would be well served by formally assigning responsibilities for vulnerability

handling and ensuring that individuals given these responsibilities understand the relevant

procedures. Both leadership and developers have responsibilities in this regard. These are28

described in Section 3.3.2. and recommendations are described in 4.3.2. of this report.

Organizations involved in vulnerability research such as Google Project Zero often establish29

policies and procedures both to ensure that developers have sufficient opportunity to address

vulnerabilities and that users of software are made aware of issues which may affect them even

if the developer fails to sufficiently address identified issues. This collection of practices is often

referred to as responsible vulnerability disclosure and attempts to balance the needs of users

29 https://googleprojectzero.blogspot.com/p/about-project-zero.html

28 Leadership responsibilities are discussed in additional detail in module 5 of the Introduction to Software Security
series developed by Elisa Heymann, Barton P. Miller and Loren Kohnfelder. Module 5.7 in particular details
responsibilities for managers. https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

26

https://googleprojectzero.blogspot.com/p/about-project-zero.html
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

with developers in regard to vulnerabilities. Software development projects such as Open30 31

OnDemand should anticipate this need when establishing procedures for handling vulnerability

reports.

3.3.2. Roles and responsibilities

In many cases, a single developer will be fully capable of handling a vulnerability report from

receipt to remediation and reporting. In some cases however, a vulnerability may be complex,

remediating it may require changes which would have significant impact on other software

components, or it may affect in some way the operations of users. Having a single developer

assigned this responsibility introduces risks of having insufficient personnel resources,

availability, and attention to address reported vulnerabilities. Responsibility to fix the

vulnerability should not be assigned only to a single individual with no fallback or accountability

mechanism to ensure that remediation is completed. Open OnDemand will need to ensure a

degree of flexibility both in personnel responsible for remediation and in roles.

Individuals with key roles will need to be in regular communication from the time a vulnerability

report is received until the vulnerability is remediated. During the remediation process,

leadership is responsible for ensuring that a capable developer is assigned to remediating a

vulnerability and has sufficient resources to do so. Leadership is also responsible for assigning

additional resources if required and ensuring that personnel assigned to the task are held

accountable for its completion. In addition to producing the necessary fixes to remediate

vulnerabilities, developers are responsible for initial triage, communication with the reporter of

the vulnerability to confirm key details, and ensuring that leadership is aware of any additional

resources which would be required to address the vulnerability report.

3.3.3. Procedures

Consistent procedures for changes, whether necessary to remediate vulnerabilities or for any

other reason, help to ensure that changes made under time pressure do not introduce

additional issues. During this engagement, Trusted CI and Open OnDemand developed

31 H. Cavusoglu, H. Cavusoglu and S. Raghunathan, "Efficiency of Vulnerability Disclosure Mechanisms to
Disseminate Vulnerability Knowledge," in IEEE Transactions on Software Engineering, vol. 33, no. 3, pp. 171-185,
March 2007, doi: 10.1109/TSE.2007.26.

30 Weulen Kranenbarg, M., Holt, T.J. & van der Ham, J. Don’t shoot the messenger! A criminological and computer
science perspective on coordinated vulnerability disclosure. Crime Sci 7, 16 (2018).
https://doi.org/10.1186/s40163-018-0090-8

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

27

https://doi.org/10.1186/s40163-018-0090-8

checklists to help developers to assess code changes for security impact more quickly and

consistently. Checklists for assessing code changes can be found in Appendix F.

Although policies and procedures should be developed and codified to ensure consistency, they

cannot be treated as static artifacts. Revision is an integral part of any policy’s lifecycle.32

Likewise, operational procedures and other less formal norms should be subject to revision

where appropriate. Techniques, norms, and operational realities will change over time. Even

well developed and current policies and procedures will have gaps which were not anticipated

by their authors. Procedures will need to be iterated upon in order to account for this.

3.4. Procedural Improvements & Effectively Utilizing Assessment Outputs

3.4.1. GitHub pull request templates to capture important context by default

GitHub provides a means to set templates for pull requests. This ensures that contributors will33

see what should be included in a pull request before submitting. This feature can be used not

only to set expectations for what contributors should provide for descriptions but can also

convey expected security norms for contributors. These norms may include security checklists,

cautionary statements, or other guidance which helps contributors to the Open OnDemand

project understand what is expected of them when submitting a pull request and what

characteristics may cause their changes to be rejected.34 35

3.4.2. Identify sensitive processes and catalog them in a software bill of materials

Identification of sensitive processes, as in step 4 of the FPVA process, allows Open OnDemand

to prioritize which software repositories and components are most important to analyze for

vulnerabilities. In addition, code changes to these should receive additional scrutiny to ensure

that they are not introducing new vulnerabilities to the software. Trusted CI and Open

OnDemand have produced a draft of a repository inventory for use as a software “bill of

35 GitHub pull request templates are also being recommended in other domains as ways to incorporate security
checklists into developer workflows. https://jemurai.com/2019/08/15/github-pr-checklist/

34 Established businesses built upon open source products such as Elastic provide such guidance to their
communities as well. These may provide valuable examples when understanding what should go into such a
template. https://www.elastic.co/guide/en/kibana/current/pr-review.html

33 GitHub provides descriptive instructions for creating these templates.
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-
a-pull-request-template-for-your-repository

32 The policy lifecycle is discussed in more detail in Trusted CI’s Framework Implementation Guide for Research
Cyberinfrastructure Operators, Must 9: Policy. https://zenodo.org/record/4562447#.YDlDhuhKiUk

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

28

https://jemurai.com/2019/08/15/github-pr-checklist/
https://www.elastic.co/guide/en/kibana/current/pr-review.html
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://zenodo.org/record/4562447#.YDlDhuhKiUk

materials” which identifies repositories relevant to the project and includes provisions for

repository owners, contact information, sensitive software components, and other key

information.

Although it would be preferable to automate the production of the bill of materials and produce

it in a format which could be readily queried by those deploying or integrating Open OnDemand

software into their own operations, the resources required to implement this automation will

be significantly higher. In addition, the recently released White House Executive Order on

Improving the Nation’s Cybersecurity instructed the National Institute of Standards and36

Technology (NIST) to produce additional guidance regarding software supply chain security,

including guidance specifically for software bills of materials. It is possible that the eventual

guidance from NIST will substantially differ from the template created during this engagement

and a significant effort would need to be undertaken to adhere to their guidance. Because of

this, an exhaustive effort to produce a comprehensive software bill of materials may prove

counterproductive until this future NIST guidance is published and can be reviewed for

applicability. We believe that the template we have produced represents a reasonable starting

point which balances effort requirements and utility given these limitations.

3.4.3. Consistent change processes

During this engagement, Trusted CI and Open OnDemand developed checklists for use when

assessing code changes for security issues. These can be found in Appendix F. The practices

incorporated into these checklists will have the most positive impact if they are followed

consistently. Failure to perform these checks during high pressure situations such as when

addressing a vulnerability or making an important change introduces additional risk that

something will be missed and may ultimately lead to additional vulnerabilities being introduced.

4. Recommendations

4.1. Dependency Analysis Tools

Status: Open OnDemand currently uses Dependabot to search for vulnerabilities in the project's

dependencies. An analysis of Dependabot's results revealed that the number of meaningful

36 Relevant details are in section 4.e. of the May 12, 2021 Executive Order on Improving the Nation’s Cybersecurity:
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-n
ations-cybersecurity/

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

29

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

vulnerabilities found is significantly smaller than the number reported by Snyk and OWASP

Dependency-Check.

Recommendation: While Dependabot's GitHub integration is highly convenient, the relative

sparsity of results compared to other tools represent a significant risk to the overall system. We

recommend using Snyk and OWASP Dependency-Check in place of Dependabot. We also

recommend using the command-line integration of these tools where possible, rather than the

website interfaces, due to differences in the results reported, as detailed in Section 3.1.3.

4.2. Static Analysis Tools

Status: Open OnDemand currently does not use any static analysis tools for JavaScript or Ruby.

4.2.1. Recommendation for JavaScript

Recommendation: For JavaScript, we recommend using SonarQube, as it provides concise

reports, has flexible configuration options, feature-full GUI experience, and performs a more

in-depth analysis than just simple pattern matching. We would discourage the use of Semgrep

and Codacy as they report the highest number of issues of all the tools we assessed. We note

that their results are primarily false positives. Moreover, the overwhelming number of results

can be frustrating and confusing to resolve.

4.2.2. Recommendation for Ruby

Recommendation: For Ruby we recommend using a combination of tools: Brakeman,

DawnScanner, and DeepSource as no single tool reports all the probable security issues when

applied to the Open OnDemand code. We do not recommend Semgrep even though it reports

two probable security issues, because more than 80% of its results are false positives (shown in

Table C7). The overwhelming number of false positives can be frustrating and confusing to

resolve.

4.3. Addressing Gaps in Vulnerability Disclosure Processes

4.3.1. Community interactions and expectations

Status: Open OnDemand doesn’t provide a dedicated workflow for reporting vulnerabilities.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

30

4.3.1.a. Aligning with responsible disclosure practices.

Recommendation: We recommend that Open OnDemand adopt a vulnerability reporting

process which supports responsible disclosure practices for security researchers. Open

OnDemand should establish clear communication lines between reporters and those

responsible for vulnerability remediation and establish and communicate both expected

remediation timelines to the community and that these expected timelines are not applicable in

all cases. We recommend that this expected remediation period be set initially at two weeks.

4.3.1.b. Communications

Recommendation: We also recommend that Open OnDemand provide a complete description

of the Open OnDemand project’s expectations for vulnerability reporting be on the Open

OnDemand website, in documentation, and directly on the relevant security policy pages in

github repositories. We have produced sample text which can be reused for this purpose, found

in Appendix E.

4.3.1.c. Confidentiality

Recommendation: To improve handling of sensitive security communications, Trusted CI

recommends that the Open OnDemand team establish a separate security mailing list for

vulnerability reporting and other security concerns. The recipients of these messages should

include, at minimum, one person from Ohio Supercomputer Center’s leadership and one

software developer from the Open OnDemand team.

In addition to a dedicated communication channel for reports to be received, Open OnDemand

may need a method to distribute sensitive vulnerability information to security and operational

staff at facilities using their software prior to public release of a patch. As Open OnDemand

operates a web forum for users, it may be appropriate for Open OnDemand to set up an access

controlled section of this forum for this purpose.

4.3.1.d. Report assignment

Recommendation: When a vulnerability report is received it should be assigned to a developer

and that individual should be responsible for remediation and response, including

communications with the reporter of the issue. We recommend that vulnerability reports are

given high priority and investigated immediately by the developer assigned to the reported

issue.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

31

4.3.1.e. Report handling consistency

Recommendation: Open OnDemand should expect that team members will occasionally receive

reports and relevant security information directly. When this occurs, the team member should

forward the report and all relevant information to the security reporting mailing list. From that

point, the same reporting and remediation procedures should be followed.

4.3.2. Roles and responsibilities

Status: Open OnDemand doesn’t have formal roles and responsibilities for vulnerability

remediation.

Recommendation: We recommend that Open OnDemand identify, at minimum, two individuals

who can be primarily responsible for managing vulnerability reports. One of these individuals

should be a member of the Ohio Supercomputer Center’s team with sufficient authority to

assign resources if necessary, and one should be a developer with dedicated effort allocation

assigned to the Open OnDemand project. Individuals identified should be recipients of the

mailing list as described in Section 3.3.1. and responsible for triage and remediation of

vulnerability reports. Responsibilities for these individuals should reflect the needs described in

Section 3.3.2. of this report.

4.3.3. Procedures

Status: Open OnDemand lacks a formal vulnerability disclosure procedure.

Recommendation: We recommend that Open OnDemand adopt responsible disclosure

procedures as described in Section 3.3.1. We recommend that the procedures codified in the37

checklists developed during this engagement be followed consistently, including when assessing

changes intended to remediate vulnerabilities or address other high priority issues.

In addition to the creation of checklists, OOD should refine their procedures over time by

reviewing and comparing them to guides such as the OWASP Vulnerability Management Guide.

The guide documents the detection, reporting, and remediation cycles of vulnerability38

management.

38 https://owasp.org/www-project-vulnerability-management-guide/

37

https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html#responsible-or-coord
inated-disclosure

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

32

https://owasp.org/www-project-vulnerability-management-guide/
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html#responsible-or-coordinated-disclosure
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html#responsible-or-coordinated-disclosure

4.4. Procedural Improvements & Effectively Utilizing Assessment Outputs

4.4.1. Develop a GitHub pull request template to capture important context

Status: Open OnDemand could use pull request templates to convey expected security norms to

contributors.

Recommendation: We recommend that Open OnDemand develop pull request templates for

Github as an additional means to set expectations about what information should be included

in pull requests. These templates should incorporate relevant security guidance for contributors

as discussed in Section 3.4.1.

4.4.2. Identify sensitive processes and catalog them in a software bill of materials

Status: Open OnDemand does not have a comprehensive inventory of software components.

Recommendation: We recommend that Open OnDemand fill out the template bill of materials,

prioritizing the core software components, and continue to update it to ensure that it can be

used to quickly identify when a change implicates a sensitive software component. Open

OnDemand should expect to evolve this document over time and may find that a spreadsheet

doesn’t provide necessary functionality and need to adopt a different format. As this topic is

actively being explored by NIST, it may also be worth exploring alignment with future NIST

recommendations for developing a software bill of materials. Open OnDemand may find it

appropriate in the future to incorporate improvements such as automating the inclusion of

relevant information from manifest files or incorporating relevant outputs from build tools to

reduce the workload required to keep this information up to date.

4.4.3. Consistent change processes

Status: During this engagement we developed checklists which describe security procedures. In

order to ensure that they are effective for their intended purpose they should be followed

consistently.

Recommendation: Trusted CI recommends the checklists discussed in Section 3.4.3. (Appendix

F) be incorporated into formal documentation, incorporated into relevant pull request

templates as discussed in Section 3.4.1, and training on their use be incorporated into

onboarding procedures for new software developers assigned to the project. We recommend

that Open OnDemand adhere to these consistently regardless of whether the source of a

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

33

proposed change is a member of the project, an external contributor, if the change is addressing

an urgent issue, or other situations which may arise.

5. Conclusion

On behalf of Trusted CI, the engagement team would like to thank the Open OnDemand project

team for its openness to the engagement process and hard work during the engagement

period. We are hopeful that the progress made in developing Open OnDemand expertise with

conducting vulnerability assessments using the FPVA methodology and related security-specific

checklists enable OOD to better maintain the security of their software and to identify and

mitigate future vulnerabilities. As the OOD team gains more experience conducting assessments

using the FVPA methodology, the Trusted CI team remains available to provide additional

guidance, support, and expertise.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

34

Appendix A: Lines of Code Analysis at version v1.8.19

Language files blank comment code

JavaScript 525 10632 16273 64403
Ruby 550 6645 7981 28212
SVG 46 31 36 16139
CSS 39 456 304 11652
Markdown 94 3355 0 8585
JSON 74 0 0 6547
reStructuredText 129 5010 5146 5946
ERB 131 443 24 4648
YAML 191 476 1155 4607
Bourne Shell 80 371 929 1678
XML 7 124 0 1551
HTML 29 134 55 1168
Sass 25 221 117 1079
Go 2 62 24 927
Puppet 17 104 334 915
Python 15 203 275 850
CoffeeScript 7 65 53 476
Lua 10 97 144 382
Freemarker Template 6 32 0 364
make 4 49 5 263
DOS Batch 1 36 2 243
diff 8 24 122 231
Handlebars 9 13 5 212
Bourne Again Shell 20 68 47 194
Dockerfile 9 38 13 152
C 4 27 35 94
Mustache 4 14 0 69
R 1 25 8 67
INI 1 1 0 38
TeX 1 1 0 36
Expect 1 2 10 9
CUDA 1 0 0 6
MATLAB 1 0 2 2
Windows Resource File 1 0 0 2

SUM: 2,043 28,759 33,099 161,747

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

35

Appendix B: Comparison of Dependency Tools

Reported Severity Legend

High The tool reported this vulnerability as a high-risk

Medium The tool reported this vulnerability as a medium-risk

Low The tool reported this vulnerability as a low-risk

White (no highlight) The tool did not provide a severity for this vulnerability

Results from dependency tools when applied to the Open OnDemand code at version
v1.8.19

Package Name Dependabot Snyk (CLI)
OWASP
Dependency-Check Depfu

1 actioncable CWE-200

2 activerecord CVE-2021-22880 CVE-2021-22880 CVE-2021-22880

3 bootstrap CVE-2018-14041

4 braces
CWE-400

NPM-786

5 clean-css CWE-185

6 cloudcmd CWE-79

7 color-string CWE-400

8 debug
CVE-2017-16137 CWE-400

NPM-534

9 diff NPM-1631

10 engine.io CVE-2020-36048

11 glob-parent CVE-2020-28469

12 growl
CWE-78

NPM-146

13 handlebars
CVE-2021-23369 CWE-471

NPM-755

14 hosted-git-info CVE-2021-23362

15 http-auth CWE-294

16 is-svg CVE-2021-28092 CVE-2021-28092

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

36

17 jquery

CVE-2007-2379

CVE-2012-6708

CVE-2015-9251

CVE-2019-11358

CVE-2020-11022

CVE-2020-11023

18 lodash

CVE-2020-28500 CVE-2018-16487

CVE-2021-23337 CVE-2018-3721

CWE-400 CVE-2019-1010266

CVE-2019-10744

CVE-2020-28500

CVE-2020-28500

CVE-2020-8203

CVE-2020-8203

CVE-2021-23337

CWE-506

CWE-770

NPM-1065

NPM-1523

NPM-577

NPM-782

19 lodash.template CVE-2021-23337

20 markdown-it CWE-400

21 minimist
CWE-94

NPM-1179

22 ms CWE-400

23 negotiator CVE-2016-10539

24 node-sass

CVE-2018-11694

CVE-2018-11697

CVE-2018-11698

CVE-2018-19797

CVE-2018-19827

CVE-2018-19839

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

37

CVE-2018-20190

CVE-2018-20821

CVE-2018-20822

CVE-2019-18797

CVE-2019-18798

CVE-2019-18799

CVE-2019-6283

CVE-2019-6284

CVE-2019-6286

CVE-2020-24025

25 parsejson
CVE-2017-16113 CWE-400

NPM-528

26 ponse CWE-22

27 postcss CVE-2021-23368

28 rails CVE-2021-22880

29 socket.io
CVE-2020-28481 CVE-2020-28481 CVE-2020-28481 CVE-2020-28481

NPM-1609

30 socket.io-parser CVE-2020-36049

31 ssri CVE-2021-27290

32 ws

CVE-2016-10542 NPM-550

CWE-330

CWE-400

33 xmlhttprequest-ssl CVE-2020-28502

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

38

Appendix C: Comparison of Static Analysis Tools

Classification Legend

Probable
The reported issue appears to be a probable issue, though was confirmed without a
running instance

Unable to Determine The reported issue was not easily evaluated, and would warrant further investigation

False Positive
It was determined by a manual review of the code that the issue reported is a false
positive

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

39

Subset of the results from static analysis tools for JavaScript when applied to

the formatted Open Ondemand code at commit 4541d6b.

Issue Type File
Reported
Severity

Code Injection

apps/file-editor/public/ace/1.2.6/ext-old_ie.js:278 Medium

apps/file-editor/public/ace/1.2.6/worker-coffee.js:16598 Medium

apps/file-editor/public/ace/1.2.6/worker-coffee.js:16606 Medium

apps/file-editor/public/ace/1.2.6/worker-css.js:1680 Medium

apps/file-editor/public/ace/1.2.6/worker-javascript.js:9556 Medium

Fingerprinting apps/shell/app.js:51 Low

Insecure HTTP
Protocol

apps/file-editor/public/ace/1.2.6/worker-html.js:3626 Low

apps/shell/public/javascripts/hterm_all_1.85.js:16458 Low

Weak
Cryptography

apps/myjobs/app/assets/javascripts/joyride.js:677 Medium

apps/shell/public/javascripts/hterm_all_1.85.js:1833 Medium

cross-origin
communication
verification

apps/dashboard/public/noVNC-1.1.0/app/error-handler.js:65 Critical

apps/dashboard/public/noVNC-1.1.0/app/error-handler.js:68 Critical

apps/dashboard/public/noVNC-1.1.0/core/util/events.js:109 Critical

apps/dashboard/public/noVNC-1.1.0/core/util/events.js:110 Critical

apps/dashboard/public/noVNC-1.1.0/legacy/app.js:13832 Critical

apps/dashboard/public/noVNC-1.1.0/legacy/app.js:13833 Critical

apps/file-editor/public/ace/1.2.6/worker-html.js:10107 Critical

apps/file-editor/public/ace/1.2.6/worker-html.js:10125 Critical

Table C1. Results from SonarQube. Showing 18 of 18 security issues at code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

40

Issue Type File
Reported
Severity

Detected
non-literal
in eval

apps/file-editor/public/ace/1.2.6/worker-coffee.js:16598 WARNING

apps/file-editor/public/ace/1.2.6/worker-coffee.js:16606 WARNING

apps/file-editor/public/ace/1.2.6/worker-css.js:1680 WARNING

apps/file-editor/public/ace/1.2.6/worker-javascript.js:9556 WARNING

apps/file-editor/public/ace/1.2.6/ext-old_ie.js:279 WARNING

apps/files/lib/cloudcmd/lib/client/edit.js:139 WARNING

apps/files/lib/cloudcmd/modules/menu/menu-io.js:170 WARNING

apps/files/lib/cloudcmd/modules/menu/menu-io.js:179 WARNING

apps/files/lib/cloudcmd/modules/menu/menu-io.js:180 WARNING

apps/files/lib/cloudcmd/modules/menu/menu-io.js:236 WARNING

apps/files/lib/cloudcmd/modules/menu/menu-io.js:245 WARNING

apps/files/lib/cloudcmd/modules/execon/lib/exec.js:106 WARNING

apps/files/lib/cloudcmd/modules/execon/lib/exec.js:119 WARNING

apps/files/lib/cloudcmd/modules/execon/lib/exec.js:164 WARNING

apps/files/lib/cloudcmd/modules/execon/lib/exec.js:174 WARNING

apps/files/lib/cloudcmd/modules/execon/lib/exec.js:65 WARNING

apps/files/lib/cloudcmd/modules/execon/lib/exec.js:66 WARNING

apps/files/lib/cloudcmd/lib/client/storage.js:37 WARNING

apps/files/lib/cloudcmd/lib/client/storage.js:51 WARNING

apps/files/lib/cloudcmd/lib/client/storage.js:70 WARNING

apps/files/lib/cloudcmd/lib/client/storage.js:80 WARNING

apps/files/lib/cloudcmd/lib/client/storage.js:90 WARNING

Detected
non-literal
in require

apps/files/lib/cloudcmd/test/lib/cloudfunc.js:7 WARNING

apps/files/lib/cloudcmd/test/lib/cloudfunc.js:8 WARNING

apps/files/lib/cloudcmd/lib/server/route.js:20 WARNING

apps/files/lib/cloudcmd/lib/server/route.js:21 WARNING

apps/files/lib/cloudcmd/lib/server/route.js:22 WARNING

apps/files/lib/cloudcmd/lib/server/route.js:31 WARNING

apps/files/lib/cloudcmd/lib/server/config.js:8 WARNING

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

41

apps/files/lib/cloudcmd/lib/server/config.js:9 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:10 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:11 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:12 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:13 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:14 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:8 WARNING

apps/files/lib/cloudcmd/lib/cloudcmd.js:9 WARNING

apps/file-editor/public/ace/1.2.6/worker-coffee.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-css.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-html.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-javascript.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-json.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-lua.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-php.js:160 WARNING

apps/file-editor/public/ace/1.2.6/worker-xml.js:160 WARNING

apps/files/lib/cloudcmd/bin/cloudcmd.js:10 WARNING

apps/files/lib/cloudcmd/bin/cloudcmd.js:11 WARNING

apps/files/lib/cloudcmd/bin/cloudcmd.js:163 WARNING

Table C2. Results from Semgrep. Showing 48 of 48 security issues at code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

42

Issue Type File
Reported
Severity

raw-html-co
ncat

apps/file-editor/public/ace/1.2.6/ace.js:15378 WARNING

apps/dashboard/public/noVNC-1.1.0/app/webutil.js:94 WARNING

apps/dashboard/public/noVNC-1.1.0/legacy/app.js:10089 WARNING

apps/file-editor/public/ace/1.2.6/mode-html_ruby.js:2208 WARNING

apps/files/lib/cloudcmd/modules/smalltalk/src/smalltalk.js:35 WARNING

apps/files/lib/cloudcmd/lib/client/files.js:79 WARNING

apps/shell/public/javascripts/hterm_all_1.85.js:2227 WARNING

apps/dashboard/public/noVNC-1.1.0/core/rfb.js:789 WARNING

apps/dashboard/public/noVNC-1.1.0/app/ui.js:830 WARNING

apps/files/lib/cloudcmd/modules/fancybox/source/jquery.fancybox.j
s:984 WARNING

jquery-inse
cure-select
or

apps/activejobs/app/assets/javascripts/application.js:207 WARNING

apps/files/lib/cloudcmd/lib/client/jstree/jstree.js:8308 WARNING

apps/files/lib/cloudcmd/lib/client/polyfill.js:54 WARNING

apps/dashboard/app/assets/javascripts/application.js:73 WARNING

insecure-do
cument-meth
od apps/myjobs/app/assets/javascripts/modernizr.mq.js:37 WARNING

insecure-in
nerhtml apps/file-editor/public/ace/1.2.6/ace.js:11538 WARNING

insufficien
t-postmessa
ge-origin-v
alidation apps/dashboard/public/noVNC-1.1.0/core/input/keyboard.js:358 WARNING

Table C3. Results from Semgrep with an alternate ruleset. Showing 17 of 887 security issues at

code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

43

Issue Type File
Reported
Severity

Generic
Object
Injection
Sink

apps/file-editor/public/ace/1.2.6/worker-xml.js:225 None Provided

apps/files/lib/cloudcmd/lib/client/config.js:233 None Provided

apps/files/lib/findit2/index.js:57 None Provided

apps/file-editor/public/ace/1.2.6/mode-r.js:111 None Provided

apps/file-editor/public/ace/1.2.6/mode-clojure.js:156 None Provided

apps/file-editor/public/ace/1.2.6/mode-makefile.js:304 None Provided

apps/file-editor/public/ace/1.2.6/mode-logiql.js:121 None Provided

apps/file-editor/public/ace/1.2.6/mode-pascal.js:187 None Provided

Found
non-literal
in RegExp
Constructor

apps/file-editor/public/ace/1.2.6/mode-abc.js:139 None Provided

apps/file-editor/public/ace/1.2.6/mode-applescript.js:89 None Provided

apps/file-editor/public/ace/1.2.6/mode-gobstones.js:525 None Provided

apps/file-editor/public/ace/1.2.6/mode-live_script.js:552 None Provided

Unsafe
Regular
Expression

apps/file-editor/public/ace/1.2.6/mode-gobstones.js:362 None Provided

apps/file-editor/public/ace/1.2.6/mode-rust.js:136 None Provided

Variable
Assigned to
Object
Injection
Sink apps/file-editor/public/ace/1.2.6/ext-language_tools.js:263 None Provided

Function
Call Object
Injection
Sink apps/shell/public/javascripts/ood_shell.1.js:28 None Provided

Found
non-literal
argument in
require apps/files/lib/cloudcmd/lib/server.js:8 None Provided

Table C4. Results from Codacy. Showing 17 of 883 security issues at code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

44

All results from static analysis tools for Ruby when applied to the Open
Ondemand code at commit 4541d6b.

Issue Type File
Reported
Severity

Command
Injection

apps/dashboard/app/controllers/products_controller.rb:119 None Provided

apps/dashboard/app/controllers/products_controller.rb:84 None Provided

apps/dashboard/app/models/batch_connect/session.rb:230 None Provided

apps/myjobs/app/models/filesystem.rb:73 None Provided

nginx_stage/lib/nginx_stage/socket_file.rb:48 None Provided

nginx_stage/lib/nginx_stage/user.rb:70 None Provided

ood-portal-generator/lib/ood_portal_generator/application.r
b:126 None Provided

File Access

apps/dashboard/app/controllers/products_controller.rb:116 None Provided

apps/myjobs/app/controllers/templates_controller.rb:37 None Provided

apps/myjobs/app/controllers/templates_controller.rb:86 None Provided

Mass
Assignment

apps/dashboard/app/controllers/permissions_controller.rb:56 None Provided

apps/dashboard/app/controllers/products_controller.rb:143 None Provided

apps/myjobs/app/controllers/workflows_controller.rb:219 None Provided

RCE apps/activejobs/config/initializers/cookies_serializer.rb:5 Warning

SQL
Injection

apps/dashboard/app/controllers/permissions_controller.rb:14 None Provided

apps/dashboard/app/controllers/permissions_controller.rb:23 None Provided

apps/dashboard/app/controllers/permissions_controller.rb:42 None Provided

apps/dashboard/app/controllers/permissions_controller.rb:6 None Provided

apps/dashboard/app/controllers/products_controller.rb:113 None Provided

apps/dashboard/app/controllers/products_controller.rb:20 None Provided

apps/dashboard/app/controllers/products_controller.rb:39 None Provided

Template
Injection

apps/dashboard/app/controllers/products_controller.rb:63 None Provided

apps/dashboard/app/models/motd_formatter_markdown_erb.rb:7 Warning

apps/dashboard/app/models/motd_formatter_plaintext_erb.rb:7 Warning

Table C5. Results from Brakeman. Showing 24 of 24 security issues at code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

45

Issue Type File
Reported
Severity

Security Header

apps/file-editor Warning

apps/activejobs Info

apps/dashboard Info

apps/myjobs Info

Session
Management

apps/activejobs/config/initializers/session_store.rb Info

apps/dashboard/config/initializers/session_store.rb Info

apps/file-editor/config/initializers/session_store.rb Info

apps/myjobs/config/initializers/session_store.rb Info

Table C6. Results from DawnScanner. Showing 8 of 8 security issues at code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

46

Issue Type File
Reported
Severity

content_tag()

apps/dashboard/app/helpers/application_helper.rb:47 Warning

apps/dashboard/app/helpers/batch_connect/session_contexts_helper.r
b:26,30... Warning

apps/dashboard/app/views/apps/_app.html.erb:20 Warning

apps/dashboard/app/views/dashboard/_motd_rss.html.erb:6,8 Warning

apps/dashboard/app/views/layouts/nav/_group.html.erb:5,6,19 Warning

apps/dashboard/app/views/products/_form_git.html.erb:3 Warning

apps/dashboard/app/views/products/_form_reset_git.html.erb:18 Warning

apps/myjobs/app/views/layouts/application.html.erb:46,47,70 Warning

apps/myjobs/app/views/workflows/index.html.erb:90,93 Warning

html-safe

apps/activejobs/app/views/jobs/_extended_panel.html.erb:50,51,52 Warning

apps/activejobs/app/views/jobs/index.html.erb:10,55,56 Warning

apps/activejobs/app/views/layouts/application.html.erb:39,41 Warning

apps/dashboard/app/views/batch_connect/session_contexts/new.html.e
rb:76 Warning

apps/dashboard/app/views/batch_connect/sessions/connections/_custo
m.html.erb:1 Warning

apps/dashboard/app/views/dashboard/_motd_markdown.html.erb:3 Warning

apps/dashboard/app/views/dashboard/_motd_rss.html.erb:8 Warning

apps/dashboard/app/views/layouts/application.html.erb:28 Warning

apps/dashboard/app/views/products/_form_git.html.erb:2,3 Warning

apps/dashboard/app/views/products/_form_manifest.html.erb:10 Warning

apps/dashboard/app/views/products/_form_reset_git.html.erb:18 Warning

apps/dashboard/app/views/products/_product.html.erb:18 Warning

apps/dashboard/app/views/products/show.html.erb:151 Warning

apps/file-editor/app/views/pages/index.html.erb:20,23 Warning

apps/myjobs/app/views/layouts/application.html.erb:34,36,51 Warning

apps/myjobs/app/views/workflows/_form.html.erb:26 Warning

Link To
apps/dashboard/app/views/permissions/_permission.html.erb:3 Warning

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

47

apps/dashboard/app/views/permissions/index.html.erb:3,6 Warning

apps/dashboard/app/views/permissions/new.html.erb:7 Warning

apps/dashboard/app/views/products/_breadcrumbs.html.erb:12 Warning

apps/dashboard/app/views/products/_new_choose_method.html.erb:14 Warning

apps/dashboard/app/views/products/_product.html.erb:8,47 Warning

apps/dashboard/app/views/products/edit.html.erb:2,24 Warning

apps/dashboard/app/views/products/new_from_git_remote.html.erb:2,1
7 Warning

apps/dashboard/app/views/products/show.html.erb:66,73,74,96,103 Warning

apps/myjobs/app/views/workflows/show.html.erb:18,31 Warning

Manual
Template
Creation

apps/dashboard/app/models/announcement.rb:43 Warning

apps/dashboard/app/models/batch_connect/app.rb:306 Warning

apps/dashboard/app/models/batch_connect/session.rb:62,526 Warning

nginx_stage/lib/nginx_stage/generator.rb:136 Warning

ood-portal-generator/lib/ood_portal_generator/view.rb:128 Warning

Mass
Assignment apps/myjobs/app/controllers/templates_controller.rb:14,99 Warning

MD5 apps/dashboard/app/models/batch_connect/session.rb:508 Warning

Raw Markdown
apps/dashboard/app/views…ts/application.html.erb:61 Warning

apps/dashboard/app/views/dashboard/_motd_osc.html.erb:8 Warning

RCE apps/activejobs/config/initializers/cookies_serializer.rb:5 Warning

Ruby Eval

nginx_stage/lib/nginx_stage/generator.rb:93 Warning

nginx_stage/spec/generators/pun_config_generator_spec.rb:43 Warning

nginx_stage/spec/generators/pun_config_generator_spec.rb:59,69,75,
86 Warning

SHA-1 ood-portal-generator/lib/ood_portal_generator/view.rb:98 Warning

Template
Injection

apps/dashboard/app/models/motd_formatter_markdown_erb.rb:7 Warning

apps/dashboard/app/models/motd_formatter_plaintext_erb.rb:7 Warning

Unsafe
Deserializatio
n ood-portal-generator/spec/application_spec.rb:57 Warning

var in script

apps/activejobs/app/views/layouts/application.html.erb:10 Warning

apps/file-editor/app/views/pages/index.html.erb:42,43,46,47 Warning

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

48

apps/myjobs/app/views/layouts/application.html.erb:11,61 Warning

var-href

apps/activejobs/app/views/jobs/_job_details_node_view.html.erb:15 Warning

apps/activejobs/app/views/layouts/application.html.erb:39,41 Warning

apps/dashboard/app/views/dashboard/_motd_rss.html.erb:7 Warning

apps/dashboard/app/views/errors/internal_server_error.html.erb:5 Warning

apps/dashboard/app/views/layouts/application.html.erb:26,28 Warning

apps/dashboard/app/views/layouts/nav/_all_apps.html.erb:2 Warning

apps/dashboard/app/views/layouts/nav/_sessions.html.erb:2 Warning

apps/dashboard/app/views/products/_form_icon.html.erb:52,76 Warning

apps/myjobs/app/views/layouts/application.html.erb:34,36 Warning

apps/myjobs/app/views/workflows/index.html.erb:16,19,21 Warning

apps/myjobs/app/views/workflows/new.html.erb:7 Warning

Table C7. Results from Semgrep. Showing 64 of 64 security issues at code commit 4541d6b

Issue Type File Reported Severity

Kernel#open

apps/dashboard/app/models/balance.rb:15 Serious

apps/dashboard/app/models/motd_file.rb:63 Serious

apps/dashboard/app/models/quota.rb:20 Serious

YAML.load
apps/dashboard/app/apps/manifest.rb Warning

ood-portal-generator/spec/application_spec.rb Warning

Table C8. Results from DawnScanner. Showing 5 of 5 security issues at code commit 4541d6b

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

49

Appendix D: Architectural and Resource Diagrams

The OnDemand team identified eight ‘flows’ that constitute the functions OnDemand can

perform. For each flow, one diagram was created and is shown in the following sections. The

eight flows are:

● Authentication Flow

● Dashboard Flow

● Dev App Flow

● Linux Host Adapter Flow

● NGINX Cron Job Flow

● Shared App Flow

● Shell Session Flow

● VNC App Flow

Authentication Flow

The authentication flow shows the series of requests and responses that are involved in

authenticating a user through an identity provider. It is assumed in all other diagrams that the

user is already authenticated, otherwise this flow would occur before further interactions with

the webserver.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

50

Figure D1. Authentication Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

51

Dashboard App Flow

The dashboard app flow shows the interactions that occur between Open OnDemand processes

when a user connects to the OnDemand dashboard after logging in.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

52

Figure D2. Dashboard App Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

53

Dev App Flow

Users can be authorized to be OnDemand developers, in which case they can run custom apps,

stored in their home directory, using OnDemand. The dev app flow shows the interactions that

occur when such an app is launched and used.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

54

Figure D3. Dev App Flow Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

55

Linux Host Adapter Flow

The linux host adapter allows hosts that aren’t configured with a scheduler to be used with On

Demand. Rather than submitting jobs to the scheduler, OnDemand sets up an ssh connection to

the server and starts the job itself in a tmux session. The Linux Host Adapter Flow shows the

interactions that occur during its operation.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

56

Figure D4. Linux Host Adapter Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

57

NGINX Cron Job Flow

The NGINX cron job runs periodically to kill old and inactive nginx instances. The NGINX cron job

flow describes its interaction with the OnDemand instance’s processes.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

58

Figure D5. NGINX Cron Job Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

59

Shared App Flow

The operation of shared apps is similar to that of dev apps. It allows users to share code and/or

binaries with other users of the OnDemand instance. The Shared App Flow shows its

interactions with the OnDemand processes and resources.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

60

Figure D6. Shared App Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

61

Shell Session Flow

OnDemand allows a user to open a shell session from their browser on either a compute node

or a login node. The Shell Session Flow shows the interactions that occur when the shell session

is setup and run.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

62

Figure D7. Shell Session Flow for Open OnDemand version 1.8.19

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

63

VNC App Flow

OnDemand allows users to run traditional desktop programs, such as IDEs or MATLAB, on a

computer host by setting up a VNC connection between their browser and the OnDemand web

host and proxying this connection to the compute node where the program is running. The VNC

App Flow shows the interactions involved in setting up and maintaining this connection.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

64

Figure D8. VNC App Flow for Open OnDemand version 1.8.1

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

65

Appendix E: Vulnerability Reporting Process Sample Text

Trusted CI and Open OnDemand developed this text during this engagement to describe

vulnerability reporting expectations for the Open OnDemand user community.

The Open OnDemand project supports responsible vulnerability disclosure. We request that
you do not report suspected security issues directly on github or through other public means
such as the Open OnDemand discourse forum or public mailing lists. Vulnerabilities and
security concerns should be reported by sending a message directly to the security reporting
email address directly. If you wish to report a vulnerability, please send an email message to
this address and include the following information:

1. Any affected Open OnDemand version or versions identified
2. A description of the vulnerability or security concern
3. If applicable, any steps the Open OnDemand team can take to reproduce the behavior
4. Your preferred contact email address and means of address for clarification and

follow-up emails

The Open OnDemand team will send acknowledgement of reports to the provided email
address within two business days of receipt and may request additional clarifying detail in
further communications. Open OnDemand values reports of vulnerabilities and other security
concerns. If a report is confirmed as a vulnerability, Open OnDemand will acknowledge the
individual or organization which reported the vulnerability in announcements about the
vulnerability unless otherwise requested to do otherwise.

The Open OnDemand team endeavors to remediate serious vulnerabilities and provide fixes
for supported versions in under 14 days. For issues where this is not possible, Open
OnDemand will distribute suggested steps which Open OnDemand users can take to mitigate
risks until a patch is available through a message to the ood-users@lists.osc.edu mailing list
and through an announcement on Open OnDemand’s Discourse forum. In addition, a39

notification will be sent to alerts@trustedci.org for Trusted CI to distribute mitigation
recommendations to the NSF CI community.

39 https://discourse.osc.edu/c/open-ondemand/announcements

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

66

mailto:ood-users@lists.osc.edu
mailto:alerts@trustedci.org
https://discourse.osc.edu/c/open-ondemand/announcements

Appendix F: Security Checklists

Pull request checklist - Security issues

1. Do you have adequate test coverage for the change? For example:

a. Are expected states covered by tests?

b. Do tests cover exceptional and unexpected states?

c. Do tests account for nefarious input?

d. Tests cover expected input to the interfaces.

2. Does this modify or add an attack vector? For example, reading user input from a web

form or constructing database queries.

3. Are the default configurations reasonably secure? For example, are file permissions set

correctly to prevent users from modifying files which are consumed by the software?

4. Does the code pass checks with Snyk, OWASP Dependency-Check, and static analysis

tools? See release checklist for details.

5. Does this modify sensitive components? For example:

a. Code which would run as a privileged user

b. Code which handles authentication or authorization.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

67

Release Tasks

Use automated scanning tools for security vulnerabilities and other flaws

1. Perform scans with Snyk, OWASP dependency-check, and static analysis tools

2. Result triage - verify scan results to eliminate false positives and either remediate issues

or hold release to fix identified issues

a. If you identify false positives, create a filter to eliminate the specific results from

future scans

3. Make necessary changes to remediate any true positive results

4. Scan again. If tools don’t identify anything new, move on to the next step.

Review and describe: What is fundamentally changing? Incorporate these observations into

appropriate documentation when appropriate.

1. What are the security implications of those changes?

2. Are there new information assets, new information flows, new open ports, new40

inputs/outputs, or other possible new avenues of attack?

3. Update existing security documentation including security diagrams, security

procedures, FPVA model, dependency information, and sensitive components inventory

as appropriate

Check configurations & documentation:

1. Are all new dependencies being checked by dependency tracking tools?

2. Are any other scanning tools configured properly so they scan any new components?

3. Are the changes in this version accurately represented in relevant security

documentation?

When sensitive components are changed, check:

1. Are proper authorization controls implemented in new sections?

2. Are proper authentication controls being used for user access?

3. Is sensitive data encrypted if it would cross important boundaries? How are encryption

keys handled for this communication?

4. Is there proper logging in important areas?

40 Information assets are valuable, sensitive, and/or mission critical information and information systems. Software
and software components are information assets.

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

68

5. Do logging mechanisms prevent exposure of sensitive information in logs?

6. Is data sanitization implemented for user input, cookies, SQL etc?

7. Are least privilege rules being followed? (don’t use admin privileges when not needed)

Open OnDemand Engagement Final Report | Trusted CI
Distribution: Public

69

