
Introducing Open OnDemand to Supercomputer Fugaku
Masahiro Nakao

Hidetomo Kaneyama
masahiro.nakao@riken.jp

hidetomo.kaneyama@riken.jp
RIKEN Center for Computational

Science
Chuo-ku, Kobe, Hyogo, Japan

Masaru Nagaku
Ikki Fujiwara

Atsuko Takefusa
mnagaku@nii.ac.jp

ikki@nii.ac.jp
takefusa@nii.ac.jp

National Institute of Informatics
Chiyoda-ku, Tokyo, Japan

Shin’ichi Miura
Keiji Yamamoto

shinichi.miura@riken.jp
keiji.yamamoto@riken.jp

RIKEN Center for Computational
Science

Chuo-ku, Kobe, Hyogo, Japan

ABSTRACT
One of the issues with high-performance computing (HPC) clusters
is that the prerequisite knowledge required to use them is large,
making the learning cost high for novice users. Moreover, it is de-
sirable to run graphical user interface applications with interactive
operations on the compute nodes, but the procedure is complicated.
This paper describes how we introduced Open OnDemand, a web
portal that enables easy use of the computing resources of an HPC
cluster, to Fugaku, a Japanese flagship supercomputer. To intro-
duce the resources to new users, we developed an adapter that
enables the job scheduler used in Fugaku to be used from Open
OnDemand. In addition, to further improve user convenience, we
developed applications that enable data sharing between Open On-
Demand and external storage, HPC infrastructure shared storage,
and GakuNin Research Data Management. This paper describes the
various features we have given to Open OnDemand for Fugaku and
the development of the data sharing applications.

CCS CONCEPTS
• Software and its engineering→ Integrated and visual devel-
opment environments; Organizing principles for web applications;
• Human-centered computing→Web-based interaction.

KEYWORDS
web platform, high performance computing, user experience

ACM Reference Format:
Masahiro Nakao, Hidetomo Kaneyama, Masaru Nagaku, Ikki Fujiwara, At-
suko Takefusa, Shin’ichi Miura, and Keiji Yamamoto. 2023. Introducing
Open OnDemand to Supercomputer Fugaku. InWorkshops of The Interna-
tional Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3624062.3624150

1 INTRODUCTION
The RIKEN Center for Computational Science (R-CCS) has oper-
ated Fugaku as the flagship supercomputer in Japan[7]. In addition,

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624150

Fugaku Pre-post environment

158,976 nodes

Fujitsu A64FX, 32GB

User

Slurm

Fujitsu TCS

Login Node

GPU node8 nodes

Intel Xeon Gold 6240 x2, 192GB

NVIDIA Tesla V100 x2

Memory node2 nodes

Intel Xeon Platinum 8280L x4, 6,144GB

Memory node1 node

Intel Xeon Platinum 8360HL x4, 6,144GB

2 nodes

Intel Xeon Gold 6338 x2, 256GB

Workflow node

Figure 1: Overview of Fugaku and pre-post environment

R-CCS provides a pre-post environment for visualization and data
conversion. Fig. 1 is a conceptual diagram of this environment. The
pre-post environment consists of nodes with GPUs, some with a
large memory capacity, and some for workflow applications. Fu-
gaku and the pre-post environment share the login node. Fugaku’s
job scheduler is the Fujitsu Software Technical Computing Suite
(Fujitsu TCS) [3], while the pre-post environment’s job scheduler is
Slurm[11]. In the conventional usage procedure, the user first logs
in to the common login node using Secure Shell (SSH), and then
submits jobs to each system using the corresponding job scheduler.

To use high-performance computing (HPC) clusters such as Fu-
gaku, knowledge of the command line interface using Shell, SSH
key pair generation and public key registration, and job scheduler is
required, resulting in a high learning cost for novice users. In recent
years, it has become desirable to run graphical user interface (GUI)
applications with interactive operations as HPC applications. How-
ever, the procedure for running such applications on the compute
nodes in an HPC cluster is complicated. For example, in the case of
a web-based application such as JupyterLab, the user must perform
the following steps each time the application is executed. (1) Log in
to the login node via SSH. (2) Run JupyterLab on the compute node
through the job scheduler. (3) Obtain the IP address of the compute
node and the port number used by JupyterLab. (4) Connect to the
local port by SSH tunneling to the obtained IP address and port
number. (5) Open the local port with a web browser. As described
above, not only do these tasks require a lot of time and effort, but
they also require the aforementioned knowledge, which is a heavy
burden for users.

To solve the above issues, we modified Open OnDemand[2], a
web portal for HPC clusters, to run on Fugaku. Open OnDemand
allows users to access the computing resources of the HPC cluster

720

https://doi.org/10.1145/3624062.3624150
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624150
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624150&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Masahiro Nakao, et al.

from a web browser instead of SSH. Furthermore, interactive op-
eration of GUI applications running on the compute nodes of the
HPC cluster can be easily performed. Although Open OnDemand
supports various schedulers (e.g., Slurm, PBS Pro, and Torque),
it previously did not support Fujitsu TCS. Thus, this paper also
describes the development of an adapter to use Fujitsu TCS in
Open OnDemand. In addition, to further improve convenience for
users, we developed applications on Open OnDemand that enable
data sharing on HPC infrastructure (HPCI) shared storage[5] and
GakuNin Research Data Management (RDM)[8]. HPCI shared stor-
age and GakuNin RDM are research data management services for
sharing research data in Japan. This paper describes our efforts for
introducing Open OnDemand to Fugaku and the development of
the adapter for Fujitsu TCS and the data sharing applications.

This paper is organized as follows. Section 2 gives an overview
of Open OnDemand, and Section 3 gives an overview of HPCI
shared storage and GakuNin RDM. Section 4 explains how we
developed the adapter for Fujitsu TCS in Open OnDemand. Section
5 describes our efforts to extend OpenOnDemand to Fugaku and the
data sharing applications. Section 6 reports an overhead evaluation
of the data sharing application for Open OnDemand. Section 7
summarizes this paper and discusses future work.

2 OVERVIEW OF OPEN ONDEMAND
Open OnDemand is open-source software that makes it easy to
use computing resources on HPC clusters[2]. One of the purposes
of Open OnDemand is to reduce the learning cost for using HPC
clusters. Settlage[12] found that the median time from the user’s
first login to job submission was about 22 hours with the traditional
SSH method, but about 2 hours with the Open OnDemand method.
Applications on Open OnDemand can be divided into (A) those that
run on a server where Open OnDemand is installed and (B) those
that run on compute nodes of HPC clusters. Each is introduced
below.

Fig. 2 shows the category (A) applications pre-installed in Open
OnDemand. The Home Directory in Fig. 2a uploads, downloads,
and edits files. The Active Jobs in Fig. 2b monitors jobs. The Job
Composer in Fig. 2c creates and submits jobs to HPC clusters. The
Shell in Fig. 2d provides a web-based terminal. The framework pro-
vided by Open OnDemand can be used to develop and introduce
new applications[1]. The development of the data sharing appli-
cations for HPCI shared storage and GakuNin RDM described in
Section 5.6 uses that framework.

When Home Directory works with rclone[9], which is software
that manages files on cloud storage, it is possible to transfer data
between Open OnDemand and cloud storage such as Amazon S3.
Many Japanese research institutes, including R-CCS, are connected
to the academic information network SINET operated by the Na-
tional Institute of Informatics (NII). When using the cloud connec-
tion service provided by SINET, high-speed data communication
between the institution and cloud storage can be performed. How-
ever, rclone does not support HPCI shared storage and GakuNin
RDM.

For category (B), Open OnDemand works with the job scheduler
of the HPC cluster and calls applications installed on the compute

(a) Home Directory

(b) Active Jobs

(c) Job Composer

(d) Shell

Figure 2: Applications pre-installed in Open OnDemand

721

Introducing Open OnDemand to Supercomputer Fugaku SC-W 2023, November 12–17, 2023, Denver, CO, USA

Calculation NodeCalculation Node

User

Open OnDemand
(1)

Auth. Server

(2)

Job Scheduler

Calculation Node

(3)

(4)(5)
(6)

Figure 3: Operation flow of interactive applications

nodes. Although the application is intended to be interactive, a nor-
mal batch job submission is also possible. Fig. 3 shows the operation
flow for an interactive application. In the figure, the authentication
server, job scheduler, and compute nodes are services provided by
the HPC cluster and are independent of Open OnDemand. (1) The
user logs in to the web server running Open OnDemand using their
own web browser. No software other than a web browser or plug-
in for a web browser is required. (2) Open OnDemand performs
authentication for the login. (3) Application execution commands
are issued from the web browser. (4) The job scheduler allocates the
compute nodes for the job. (5) When the job is executed, informa-
tion about the compute node and the port number used by the GUI
application are sent to Open OnDemand. Then, Open OnDemand
sets up a reverse proxy to connect to the compute node. (6) The
user connects to the compute node inside the HPC cluster from the
web browser using the reverse proxy.

3 JAPANESE RESEARCH DATA SERVICE
3.1 HPCI shared storage
HPCI is a shared computing environment infrastructure that con-
nects the computing resources of Japanese research organizations
with SINET, and Fugaku is also a part of HPCI. HPCI shared storage
is a large-scale data sharing infrastructure for sharing research data
quickly and securely among geographically distributed HPCI orga-
nizations. HPCI shared storage is jointly operated by R-CCS (Kobe
City, Hyogo Prefecture) and the Information Technology Center
of the University of Tokyo (Kashiwa City, Chiba Prefecture), and
file servers are located at each site. Gfarm[10] has been adopted as
the file system for HPCI shared storage, and complete mirroring is
performed by placing one file copy at each site.

The procedure for connecting to HPCI shared storage is as fol-
lows. (1) To access HPCI shared storage using Grid Security Infras-
tructure authentication, an electronic certificate and a proxy certifi-
cate are issued from the HPCI certificate issuing system1. (2) The
user logs in to the environment where the Gfarm client is installed,
and downloads the proxy certificate with the myproxy-logon com-
mand. The user must also enter the passphrase issued with the
proxy certificate. (3) The user executes the mount.hpci command
and the fusermount command to mount HPCI shared storage.

3.2 GakuNin RDM
GakuNin RDM is a research data management service for storing
and sharing research data and related materials with collaborators,
and it is maintained and operated by NII. GakuNin RDM is based on
the Open Science Framework provided by the US nonprofit Center
for Open Science. Like Open OnDemand, GakuNin RDM provides
1https://portal.hpci.nii.ac.jp

Figure 4: Project page in GakuNin RDM

functions for data transfer and data analysis using JupyterLab via
web browsers.

A user takes the following steps to use GakuNin RDM. (1) Create
a research project on GakuNin RDM. (2) Register joint researchers.
(3) Save, share, and manage versions of the research data in the
storage for each research project. Fig. 4 shows a GakuNin RDM
project page. To connect to GakuNin RDM project storage using a
method other than a web browser, the storage is mounted using a
script published by NII2. This script uses pyfuse3, a filesystem in
userspace library for Python3. When mounting storage, the user
needs a project ID and a personal access token that can be obtained
from the corresponding project page on GakuNin RDM.

4 ADAPTER FOR FUJITSU TCS
4.1 Overview
This section explains how we implemented an adapter for using
Fujitsu TCS in Open OnDemand. In addition, we modified the
existing code to display job details and job submission options
related to Fujitsu TCS. The changes were merged into the master
branch of the Open OnDemand GitHub repository3. Therefore,
Open OnDemand can be used as is on other HPC clusters that have
adopted Fujitsu TCS as the job scheduler.

4.2 Job scheduler adapter
Open OnDemand provides an adapter interface to support various
job schedulers. Therefore, the methods defined in the parent class
of the adapter are implemented with Ruby for Fujitsu TCS. Some
of the methods are shown below.

submit Submit a job
delete Delete a job
status Get status of a job
hold Hold a job
release Release a held job
info Get information for a job
info_all Get information for all jobs
cluster_info Get system information for an HPC cluster
supports_job_arrays Bulk job support availability

2https://github.com/RCOSDP/CS-rdmfs
3https://github.com/OSC/ood_core

722

https://portal.hpci.nii.ac.jp
https://github.com/RCOSDP/CS-rdmfs
https://github.com/OSC/ood_core

SC-W 2023, November 12–17, 2023, Denver, CO, USA Masahiro Nakao, et al.

1 module Adapters
2 class Fujitsu_TCS < Adapter
3 class Batch
4 def delete_job(id)
5 call("pjdel", id.to_s)
6 end
7
8 def delete(id)
9 @fujitsu_tcs.delete_job(id.to_s)
10 end

Figure 5: Code for delete method

directive_prefix Prefix for a job scheduler (#PJM for Fujitsu
TCS)

This section describes the implementation of the delete and info_all
methods. To simplify the explanation, exception handling is omit-
ted.

Fig. 5 shows the code for the deletemethod. In line 8, the overrid-
den deletemethod is defined. In line 9,@fujitsu_tcs is an instance
of the Batch class. The pjdel command called in line 5 is a Fujitsu
TCS command that deletes a specified job, and the job ID is passed
through as an argument.

Fig. 6 shows the code for the info_all method. In line 30, the
overridden info_all method is defined. In the get_jobs method
defined in line 1, the pjstat command called in line 6 is a Fujitsu
TCS command that gets job information, and its options are defined
in lines 2–4. In line 2, “-s” outputs detailed information, “--data”
outputs data in the CSV format, and “--choose” selects the items to
be output (from the left, the codes mean job ID, job name, resource
group, status, standard output file path, standard error file path,
submission time, start time, number of nodes, user name, time limit,
and elapsed time, respectively). In lines 3–4, “--filter” is an option
to filter the output of the pjstat command by job ID and user
name. In lines 11–15, the hash array jobs is created by formatting
the output of the pjstat command and options described above.
In the parse_job_info method defined in line 21, a Info object is
created for each job based on the hash array jobs obtained from
the get_jobs method. In line 23, the get_state method converts
the job state obtained from the pjstat command to one of the
job states defined in Open OnDemand (undetermined, completed,
queued_held, queued, running, or suspended). In lines 25–26, the
duration_in_seconds method converts the duration to seconds
(e.g., “00:01:23” changes to 83).

4.3 Detailed information
Clicking the button to the left of the ID number in the Active Jobs
page shown in Fig. 2b displays the details of the job. However, in
the case of unsupported schedulers, as was previously the case
for Fujitsu TCS, nothing is displayed in the details. Therefore, we
decided to display the number of nodes, time limit, submission time,
and start time for the job, which is information obtained from the
pjstat command. Fig. 7 shows the modified code. The variable info
used in the code is the Info object created in lines 22–27 of Fig. 6.

1 def get_jobs(id: "", owner: nil)
2 args = ["-s", "--data", "--choose=jid,jnam,rscg,st,std,stde

,adt,sdt,nnumr,usr,elpl,elp"]
3 args.concat ["--filter", "jid=" + id.to_s] unless id.to_s.empty?
4 args.concat ["--filter", "usr=" + owner.to_s] unless owner.to_s.

empty?
5
6 StringIO.open(call("pjstat", ∗args)) do |output|
7 output.gets() # Skip header
8 jobs = []
9 output.each_line do |line|
10 l = line.split(",")
11 jobs << {:JOB_ID => l[1], :JOB_NAME => l[2],
12 :RSC_GRP => l[3].split[0], :ST => l[4], :STD => l[5],
13 :STDE => l[6], :ACCEPT => l[7], :START => l[8],
14 :NODES => l[9].split(":")[0], :USER => l[10],
15 :ELAPSE_LIM => l[11], :ELAPSE_TIM => l[12].split[0]}
16 end
17 jobs
18 end
19 end
20
21 def parse_job_info(v)
22 Info.new(id: v[:JOB_ID], job_name: v[:JOB_NAME],
23 queue_name: v[:RSC_GRP], status: get_state(v[:ST]),
24 submission_time: v[:ACCEPT], dispatch_time: v[:START],
25 wallclock_limit: duration_in_seconds(v[:ELAPSE_LIM]),
26 wallclock_time: duration_in_seconds(v[:ELAPSE_TIM]),
27 job_owner: v[:USER], native: v)
28 end
29
30 def info_all(attrs: nil)
31 @fujitsu_tcs.get_jobs().map do |v|
32 parse_job_info(v)
33 end

Figure 6: Code for info_all method

1 def extended_data_fujitsu_tcs(info)
2 return unless info.native
3 attributes = []
4 attributes.push Attribute.new "Nodes", info.native[:NODES]
5 attributes.push Attribute.new "Time␣Limit", pretty_time(info.

wallclock_limit)
6 attributes.push Attribute.new "Submission␣Time", info.native[:

ACCEPT]
7 attributes.push Attribute.new "Start␣Time", info.native[:START]
8 ...

Figure 7: Code for Active Jobs

4.4 Job submission option
If multiple compute nodes are used, an option to specify the number
of nodes is required in the job submission command. For example,
to use two compute nodes on Fujitsu TCS, the user enters “pjsub
-L node=2.” Fig. 8 shows the modified code to achieve this. Only
lines 6–7 were added to the existing code.

723

Introducing Open OnDemand to Supercomputer Fugaku SC-W 2023, November 12–17, 2023, Denver, CO, USA

1 def submit(fmt: nil)
2 slots = value.blank? ? 1 : value.to_i
3 case fmt
4 when "slurm"
5 native = ["-N", slots]
6 when "fujitsu_tcs"
7 native = ["-L", "node=#{slots}"]
8 ...

Figure 8: Code for job submission

5 OPEN ONDEMAND ON FUGAKU
5.1 Overview
This section describes the settings and innovations of Open OnDe-
mand on Fugaku. The settings described in this section are available
at https://github.com/RIKEN-RCCS/ondemand_fugaku.

5.2 Authentication
The conventional procedure to log in to Fugaku via SSH is as follows.
(1) R-CCS sends a client certificate to the user. (2) The user installs
the certificate in their web browser or OS. (3) The user creates an
SSH key pair if the user does not have one. (4) The user logs in to
the user portal of Fugaku and registers the SSH public key to the
portal. (5) The user logs in to the login node via SSH.

As described above, Fugaku performs user authentication using a
client certificate. As an authentication server for Open OnDemand
in Fig. 3, we installed keycloak, an authentication software for
single sign-on on the web, to perform authentication using a client
certificate. When Open OnDemand works with keycloak, the users
can log in to the Open OnDemand web portal by performing only
steps (1) and (2) above. Thus, it is expected that the effort required
to log in to Fugaku will be greatly reduced.

5.3 Available applications
Open OnDemand on Fugaku divides the applications that run on
the compute nodes described in Section 2 (category B) into “in-
teractive applications” and “batch jobs.” Table 1 and Table 2 show
the available interactive and batch job applications, respectively.
Applications marked with an asterisk (*) in the table indicate that
they are commercially available.

The commercial applications are installed on Fugaku or in the
pre-post environment. Many of the interactive applications in Ta-
ble 1, except for the commercial applications, are not installed on
Fugaku or in the pre-post environment. Therefore, we prepared a
SingularityPro[13] container image with the applications installed,
which is called from Open OnDemand. The CPU used for the Fu-
gaku nodes (Fig. 1) is the Fujitsu A64FX[4], which is based on the
ARM architecture, while the CPU used for nodes in the pre-post en-
vironment has the general x86_64 architecture. Thus, we prepared
container images for each architecture. In the container image for
the pre-post environment, all applications other than the commer-
cial applications in Table 1 are installed. In the container image of
Fugaku, only software that is frequently used in Fugaku is installed
to reduce management costs. Specifically, the development envi-
ronments Desktop, Jupyter, RStudio, and VSCode are installed, as is

(1)

(3)

(2)

(4)

(5)

(6)

(7)

Figure 9: Dashboard of Open OnDemand on Fugaku

Paraview, a viewer that enables parallel processing using multiple
processes. Although the definition files for the container image for
each architecture are basically the same, some RPM packages for
the ARM architecture do not exist (e.g., TurboVNC for Desktop). In
such cases, the source code for the application is obtained using
the wget command in the definition file, and then compiled and
installed.

The applications for batch jobs in Table 2 are already installed in
Fugaku and pre-post environment, and managed using the package
management system Spack[6] on Fugaku. Therefore, the corre-
sponding application is invoked from Open OnDemand using the
spack load command.

5.4 Dashboard
The first page that appears when a user logs in to Open OnDemand
is called the “dashboard.” Fig. 9 shows the dashboard of Open On-
Demand on Fugaku. The content displayed on the dashboard can
be freely edited by the administrator by writing directly in eRuby.
To improve user convenience, the following information that is
important for the use of Fugaku is displayed. (1) External links to
manuals and Fugaku resources. (2) System failure and operation
information. (3) Operation calendar for large-scale job execution
periods and maintenance (using Google Calendar). (4) The number
of jobs waiting in each queue of the job scheduler (using Grafana).
(5) The user’s disk and budget utilization. To obtain the user’s disk
and budget utilization, it is necessary to execute a Fujitsu TCS com-
mand several times, and it takes several seconds to obtain all the
information. To avoid a delay of several seconds each time the dash-
board is displayed, the information for all users is saved once a day
using cron, and the saved information is loaded to the dashboard.

724

https://github.com/RIKEN-RCCS/ondemand_fugaku

SC-W 2023, November 12–17, 2023, Denver, CO, USA Masahiro Nakao, et al.

Table 1: Interactive applications in Open OnDemand on Fugaku

Category Application
Development Desktop, Jupyter, MATLAB*, RStudio, VSCode
Profiler NVIDIA Visual Profiler*, NVIDIA Nsight Compute*, NVIDIA Nsight Systems*, Vampir*

Viewer AVS/Express*, C-Tools, GaussView*, ImageJ, OVITO, Paraview, PyMOL, SALMON view, Smokeview,
VESTA, VMD, VisIt, XcrySDen

Workflow WHEEL

Table 2: Applications for batch jobs in Open OnDemand on Fugaku

Category Application
Climate SCALE
Computer Aided Engineering FDS, FrontFlow (blue/X), FrontISTR, OpenFOAM (Foundation/OpenCFD)
Condensed Matter Physics ALAMODE, AkaiKKR, HΦ, mVMC, OpenMX, PHASE/0, Quantum Espresso, SALMON
Molecular Dynamics GENESIS, GROMACS, LAMMPS, MODYLAS
Quantum Chemistry ABINIT-MP, Gaussian*, NTChem, SMASH
Quantum Simulation braket

Table 3: Items in Fugaku queues

Queue Time (hours) Nodes
fugaku-small 72 384
fugaku-large 24 12,288

Table 4: Items in pre-post environment queues

Queue Time CPU Memory GPUs(hours) Cores (GB)
prepost-gpu1 3 72 186 2
prepost-gpu2 24 36 93 2
prepost-mem1 3 224 6,045 -
prepost-mem2 24 56 1,511 -
prepost-ondemand 720 8 32 -

Applications that were used once are likely to be used again.
To allow users to immediately launch such applications, “Recently
Used Apps” (6) displays the applications that were used recently.
This is the default function of Open OnDemand, but with the de-
fault setting, clicking an icon in (6) automatically submits a job
using the parameters that were previously executed. To be able to
deal with the case where the parameters need to be changed, we
change the settings. The icons in (7) are applications that run on the
server where Open OnDemand is installed, as described in Section
2 (category A).

5.5 Web form
Table 3 and Table 4 show each queue for the Fugaku and pre-post
job schedulers, respectively, with the maximum values of the main
items. Although only a single node is available in the pre-post
environment, oversubscribing, the ability to run multiple jobs on
a single node simultaneously, is also possible, which allows the
user to specify the number of CPU cores, amount of memory, and
number of GPUs. The prepost-ondemand queue is a workflow
queue, so it can be configured to have a long duration.

Figure 10: Web form for fugaku-small queue

The procedure for executing the applications shown in Table 1
and Table 2 is as follows. When a user selects an application icon
from the navigation bar at the top or from Recently Used Apps on
the dashboard in Fig. 9, the fugaku-small queue web form will be
displayed as shown in Fig. 10. If the queue item is set to “prepost-
gpu1,” it switches to the web form for the prepost-gpu1 queue, as
shown in Fig. 11. The input items and their maximum values for
each web form are shown in Table 4. When “Launch” is clicked, the
job is submitted to the specified queue. For an interactive applica-
tion, when the job is executed on a compute node, a link to connect

725

Introducing Open OnDemand to Supercomputer Fugaku SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 11: Web form for prepost-gpu1 queue

Figure 12: Link to connect to compute node

to that compute node is displayed to the user, as shown in Fig. 12.
For a batch job, only a message indicating that the job is running is
displayed.

A user may belong to multiple Fugaku user groups. Because a
budget is set for each group, it is necessary to select which group’s
budget is used in Fig. 10. Note that the budget is not consumed in
the pre-post environment, so there are no group budget items in Fig.
11. Although omitted in Table 3, Fugaku has a special low-priority
and no-consumption budget queue that can be used only by groups
whose budget usage exceeds 95%. In such a case, this special queue
is also displayed in the queue item in Fig. 10. In this way, Open
OnDemand has a mechanism to dynamically generate different web
forms for users with different circumstances. One problem with
this mechanism is that, to display the dashboard, the web forms
for all applications need to be generated, which slows down the
display of the dashboard. Therefore, as described for the Fugaku
status in Section 5.4, we use cron to obtain information for each
user or group in advance to speed up the dynamic generation of
web forms.

Configuration files for web forms are defined in the YAML format.
Fig. 13 shows part of the configuration for the fugaku-small queue.
Such a configuration file must be prepared for each application.
However, the configuration items for all applications are almost the

1 fugaku_small_hours:
2 label: Elapsed time (1 − 72 hours)
3 widget: number_field
4 value: 1
5 min: 1
6 max: 72
7 step: 1
8 required: true

Figure 13: Some settings for fugaku-small queue

(a) HPCI Shared Storage

(b) GakuNin RDM

Figure 14: Data communication applications

same. To simplify code management, eRuby is used to automatically
generate configuration files. Specifically, we define a function that
outputs Fig. 13 as it is, and generate the configuration files for
the web forms of all applications. This function is called from the
configuration files of all applications’ web forms. By doing this, the
number of lines in the configuration file per application is reduced
from about 250 to 25. Although omitted from this paper, we have
also made similar efforts in the shell scripts that invoke applications
from the job scheduler.

5.6 Data sharing applications
Fig. 14 shows a screenshot of the data sharing applications for
HPCI shared storage and GakuNin RDM. In Fig. 14a, the input
items for HPCI shared storage are the HPCI ID, the elapsed time,
and the passphrase for the proxy certificate. When the “mount”
button is clicked, the myproxy-logon and mount.hpci commands
described in Section 3.1 are executed. The local path to be mounted
is automatically determined by the mount.hpci command, and the
path is output on the right side of the display. The path is used as the
startup link for the Home Directory application in Fig. 2a. Clicking
the link opens the corresponding directory in the Home Directory
application. In Fig. 14b, the input items for GakuNin RDM are the
local path to be mounted, the project ID, and the personal access
token. When the “mount” button is clicked, mounting is performed
by the script described in Section 3.2. After that, the process is the
same as for HPCI shared storage.

Using this application makes it possible to transfer data from
Fugaku to HPCI shared storage or GakuNin RDM on the Home
Directory application in Fig. 2a. This eliminates the cumbersome
command-line procedure described in Section 3, and is expected to
allow users to manage their research data more easily.

726

SC-W 2023, November 12–17, 2023, Denver, CO, USA Masahiro Nakao, et al.

80

60

40

20

0

P
e

rf
o

rm
a

n
c
e

 (
M

iB
/s

)

1 4 16 64 256 1024

Transfer size (MiB)

w/o Open OnDemand

w/ Open OnDemand

Figure 15: Data transfer speed evaluation

6 EVALUATION
This section clarifies the computational overhead of Open OnDe-
mand by comparing the data transfer rate between Fugaku and
external storage with and without the Open OnDemand functions
described in Section 5.6. Because the overhead is expected to be the
same regardless of whether HPCI shared storage or GakuNin RDM
is used for external storage, only HPCI shared storage was used in
this evaluation. Also, since the Open OnDemand server and HPCI
shared storage are in the same building, we considered that there
would be little disturbance in communication performance.

When Open OnDemand was used, the elapsed time for each
command output to the Open OnDemand log was measured. The
measurement accuracy was on the order of 10−5 s. The cp com-
mand was used for file transfers in the Home Directory application.
WhenOpenOnDemandwas not used, login to the Open OnDemand
server was performed directly using SSH and the same transfer was
made using the cp command. As described in Section 3.1, HPCI
shared storage is divided into two locations, so in this experiment,
the data were configured to be transferred to a file server located
in R-CCS. The server running Open OnDemand on Fugaku is con-
nected to the Fugaku file system with InfiniBand EDR (100 Gbps),
and the server is also connected to HPCI shared storage with 100
Gigabit Ethernet. The specifications of the server are the same as
those of the “workflow node” in Fig. 1. The versions of Open OnDe-
mand, Gfarm client and gfarm2fs used were 3.0.1, 2.7.24 and 1.2.17,
respectively.

We evaluated the performance by transferring files of various
sizes from Fugaku to HPCI shared storage. Fig. 15 shows the best
values out of 10 trials. The results show that the data transfer
without Open OnDemand is up to 28% faster for small data amounts
due to its overhead, but the performance difference disappears as
the amount of data increases. When transferring data to external
storage, the overhead of Open OnDemand is not considered to be
a problem in practical use, because multiple small files are often
compressed into a single large data file and sent.

7 SUMMARY AND FUTUREWORK
This study extended Open OnDemand, which makes it possible to
easily use the computing resources of an HPC cluster, to Fugaku,
and this paper describes some of the modifications we made for
its operation. Specifically, the following are described: support for

Fujitsu TCS, use of SingularityPro for the installation of various
interactive applications and applications for batch jobs, display of
useful information for users on the dashboard and speeding up of
the display, dynamic generation of web forms and simplification of
configurations, and the development of data transfer applications
for HPCI shared storage and GakuNin RDM. The performance of
the data sharing application was evaluated, and it was confirmed
that the overhead of Open OnDemand is sufficiently small.

Planned future work is as follows. (1) When multiple datasets are
transferred to HPCI shared storage, data transfer can be completed
in a short time by parallel transfer using the gfpcopy command.
Therefore, we will add an option to select parallel transfer in the
Home Directory application in Open OnDemand. (2) To quantita-
tively clarify the effect of introducing Open OnDemand to Fugaku,
statistical information such as the number of user logins and the
number of job submissions will be obtained and compared between
conventional users and Open OnDemand users. (3) Since rclone
described in Section 2 requires configuration through the CLI, it is
difficult to set up for novice users that Open OnDemand assumes.
Although rclone also has a web-based GUI for setting, it is nec-
essary to launch a remote desktop on the compute node to use
it from Open OnDemand. The data sharing application described
in Section 5.6 can be configured entirely with a GUI on the Open
OnDemand server. Thus, by extending the data sharing application
to call rclone, it can be used for all cloud storage supported by
rclone. (4) Open OnDemand enables the construction of a common
front end for HPC clusters, thereby reducing system development
costs and providing a unified interface for users. Therefore, we will
continue to publicize our experience with Open OnDemand on
Fugaku to promote its widespread use.

ACKNOWLEDGMENTS
We would like to thank Fujitsu engineers for their advice in imple-
menting Open OnDemand.

REFERENCES
[1] Chen, Huan and Fietkiewicz, Chris. 2018. Version Control Graphical Interface

for Open OnDemand. In Proceedings of the Practice and Experience on Advanced
Research Computing (Pittsburgh, PA, USA) (PEARC ’18). Article 103, 4 pages.
https://doi.org/10.1145/3219104.3229268

[2] Dave Hudak et al. 2018. Open OnDemand: A web-based client portal for HPC
centers. Journal of Open Source Software 3, 25 (2018), 622. https://doi.org/10.
21105/joss.00622

[3] Fujitsu Inc. 2018. FUJITSU Software Technical Computing Suite (in Japanese).
https://www.fujitsu.com/downloads/JP/jsuper/tcs-v4-datasheet.pdf.

[4] Fujitsu Inc. 2023. A64FX Microarchitecture Manual. https://github.com/fujitsu/
A64FX/.

[5] High Performance Computing Infrastructure. 2023. HPCI shared storage. https:
//www.hpci-office.jp/en.

[6] Lawrence Livermore National Laboratory. 2023. Spack Website. https://spack.io.
[7] Mitsuhisa Sato et al. 2020. Co-Design for A64FX Manycore Processor and "Fu-

gaku". In International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, Los Alamitos, CA, USA, 651–665.

[8] National Institute of Informatics. 2023. GakuNin RDM. https://rdm.nii.ac.jp.
[9] Nick Craig-Wood. 2023. Rclone Website. https://rclone.org.
[10] Osamu Tatebe et al. 2010. Gfarm Grid File System. New Generation Computing,

Ohmsha, Ltd. and Springer 28, 3 (2010), 257–275.
[11] SchedMD LLC. 2023. Slurm. https://slurm.schedmd.com/.
[12] Settlage, Robert et al. 2019. Open OnDemand: HPC for Everyone. In High

Performance Computing: ISC High Performance 2019 International Workshops,
Frankfurt, Germany, June 16-20, 2019, Revised Selected Papers. 504–513. https:
//doi.org/10.1007/978-3-030-34356-9_38

[13] Sylabs. 2023. SingularityPRO. https://sylabs.io/singularity-pro/.

727

https://doi.org/10.1145/3219104.3229268
https://doi.org/10.21105/joss.00622
https://doi.org/10.21105/joss.00622
https://www.fujitsu.com/downloads/JP/jsuper/tcs-v4-datasheet.pdf
https://github.com/fujitsu/A64FX/
https://github.com/fujitsu/A64FX/
https://www.hpci-office.jp/en
https://www.hpci-office.jp/en
https://spack.io
https://rdm.nii.ac.jp
https://rclone.org
https://slurm.schedmd.com/
https://doi.org/10.1007/978-3-030-34356-9_38
https://doi.org/10.1007/978-3-030-34356-9_38
https://sylabs.io/singularity-pro/

	Abstract
	1 Introduction
	2 Overview of Open OnDemand
	3 Japanese research data service
	3.1 HPCI shared storage
	3.2 GakuNin RDM

	4 Adapter for Fujitsu TCS
	4.1 Overview
	4.2 Job scheduler adapter
	4.3 Detailed information
	4.4 Job submission option

	5 Open OnDemand on Fugaku
	5.1 Overview
	5.2 Authentication
	5.3 Available applications
	5.4 Dashboard
	5.5 Web form
	5.6 Data sharing applications

	6 Evaluation
	7 Summary and future work
	Acknowledgments
	References

