
Comparing Open Ondemand and Jupyterhub as Interactive HPC
Gateways
Michael Milligan
Graham T. Allan

Nicholas J. H. Dunn
Matt Mix

milligan@umn.edu
gta@umn.edu

dunn0404@umn.edu
mattmix@umn.edu

University of Minnesota
Minneapolis, Minnesota, USA

ABSTRACT
The Minnesota Supercomputing Institute (MSI) at the University
of Minnesota has adopted a goal of supporting Interactive high
performance computing (HPC) as a first class service. For several
years MSI has used Jupyterhub to provide a web gateway to interac-
tive Jupyter notebook environments on HPC resources. In the past
year MSI has additionally adopted Open OnDemand as a general
purpose web gateway for interactive HPC services. This places
MSI in the position to provide an experience-informed comparison
of two popular open-source platforms for interactive web-based
access to HPC resources.

Open OnDemand is designed specifically to provide access to
HPC resources, and includes facilities to manage files and jobs,
access in-browser command line sessions, and provide virtual desk-
top access to GUI applications as well as proxied access to web
applications such as Jupyter servers. Jupyterhub, in contrast, is
designed to provide multi-user access to Jupyter servers, and when
configured with the Batchspawner extension is able to manage
such servers on scheduled HPC cluster resources. Jupyterlab, when
accessed through a Jupyterhub so configured, likewise offers access
to in-browser facilities such as command line terminals and file
management, and can proxy access to some other web applications,
in addition to supporting the main Jupyter Notebook application.
From a systems perspective, both platforms provide a highly config-
urable base on which to build customized gateway solutions, but the
differing focus of the two projects results in different characteristics
and challenges.

Despite different origins and project focus, Jupyterhub and Open
OnDemand have evolved to be able to provide strongly overlapping
services to users of an HPC center. This poster will compare the
characteristics of the two platforms and the different advantages
and limitations of each, from the perspective of an HPC center

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEARC ’23, July 23–27, 2023, Portland, OR, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9985-2/23/07.
https://doi.org/10.1145/3569951.3597602

that has deployed both into production for use by a large base of
research users.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; • Social and professional topics
→ Software selection and adaptation; • Software and its engineer-
ing → Software usability.

KEYWORDS
interactive computing; HPC; science gateways; Jupyter; Jupyterhub;
Open OnDemand
ACM Reference Format:
Michael Milligan, Graham T. Allan, Nicholas J. H. Dunn, and Matt Mix. 2023.
Comparing Open Ondemand and Jupyterhub as Interactive HPC Gateways.
In Practice and Experience in Advanced Research Computing (PEARC ’23),
July 23–27, 2023, Portland, OR, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3569951.3597602

1 INTRODUCTION
High performance computing has traditionally centered on batch
computing, but computational researchers increasingly demand
interactive access modes. Interactive HPC allows users to interact
with the system in real-time, explore data interactively, and iterate
their code and workflows in real time. In a parallel development,
the web has rapidly become the dominant access paradigm for re-
mote access to computational resources of all kinds; while HPC as
a field lagged this trend, today’s researchers increasingly expect
web-based access to these systems as well. The Minnesota Super-
computing Institute aims to support interactive HPC as a first class
service, and increasingly does so using web technologies[3].

With the adoption of the Jupyterhub/Batchspawner platform,
MSI’s interactive HPC offerings fell into three primary categories:
command line interfaces accessed via SSH, remote desktops pro-
vided byNoMachineNX andNICE-DCVEnginFrame, and Jupyter[1]
sessions accessed via Jupyterhub. This state of affairs presented
both operational and user support challenges. In particular, main-
taining two remote desktop portals, which each required a special-
purpose compute resource separate from MSI’s main compute clus-
ters, proved costly in staff time and licensing costs. We sought a

466

https://orcid.org/0009-0007-1317-3137
https://orcid.org/0009-0002-1678-3516
https://orcid.org/0000-0002-4333-9050
https://orcid.org/0009-0003-6052-4025
https://doi.org/10.1145/3569951.3597602
https://doi.org/10.1145/3569951.3597602
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569951.3597602&domain=pdf&date_stamp=2023-09-10


PEARC ’23, July 23–27, 2023, Portland, OR, USA Milligan, Allan, Dunn, and Mix

solution that would simplify operations while giving users a supe-
rior experience in which they could directly access compute cluster
resources. Open OnDemand[2] (OOD) came to our attention as
a promising open source solution that could provide this service
using web technology, and a number of other interactive services as
well. MSI deployed OOD for general use in December 2022 and is in
the process of retiring the older remote desktop service offerings.

This presents the opportunity to perform a direct comparison.
Aside from traditional SSH shell sessions, MSI now supports two
major interactive HPC technologies: Jupyterhub and OOD. Other
than remote desktop access, these technologies support a strikingly
overlapping set of interactive services. At first glance, this may be
surprising. OOD is purpose-built to provide interactive services in
HPC environments. Jupyterhub, in contrast, exists to enable the
use of Jupyter in multiuser environments. Because of the wide
diversity of such environments, Jupyterhub is built on a highly
modular architecture. Starting in 2015, MSI supported the develop-
ment of Batchspawner, a Jupyterhub spawner plugin that enables
it to launch Jupyter sessions in scheduled (Slurm/PBS/Condor/etc)
environments. Meanwhile, Jupyter means more than just Jupyter
Notebooks. The Jupyter web application has long provided com-
mand line terminal and file browsing capabilities, and the extensible
Jupyterlab application has further developed these possibilities. As
a result, when configured for interactive HPC use, Jupyterhub and
OOD share a notably similar architecture: both consist of a web
application able to serve a UI, submit and manage jobs on behalf of
authenticated users, and create proxied web connections to services
started within those jobs on compute resources.

2 COMPARISON: DEPLOYMENT AND
MANAGEMENT

ability to deploy and manage them via puppet modules. Jupyterhub
consists of a python application and accompanying web proxy
and database services, and can be installed in a number of ways.
MSI chose to develop a puppet module that deploys Jupyterhub,
which occurred alongside the development effort that supported
the creation of Batchspawner.

Open OnDemand’s web service was easy to deploy through the
OSU provided puppet module, which offered flexible configuration
for most options. MSI did need to develop patches to configure
some missing desired options, and OSU promptly accepted these
patches. The OOD project provides well-written documentation
that demonstrated what configurations could be set to meet our
needs.

Both OOD and Jupyterhub can utilize properly configured exter-
nal software, whether provided by the HPC center or installed by
the user. For an HPC center like MSI that aims to provide a large
library of user-facing software, this has the consequence that the
provided software must be made available in a way that can be used
via the gateways. Naturally a large fraction of the software library
consists of command line applications, and these can be used as
usual from a terminal environment on either platform. Another
major class of interactive application either provides or requires the
use of a GUI. The flexibility of the virtual desktop environment that
OOD provides means that any module that provides a graphical
interface could be tested and configured. Through its capability

for GPU-accelerated virtual desktops, OOD was able to displace
two earlier remote desktop technologies (NICE-DCV and NX), and
simplify our catalog of services. It should be noted that efforts do
exist in the Jupyter ecosystem to support remote desktop sessions
via websocket NoVNC, the same underlying remote display tech-
nology as OOD uses. While MSI has used these extensions in other
contexts, we have not successfully deployed this as a general com-
pute cluster remote desktop service, and thus we do not evaluate
that approach here. In both cases, the loose coupling between soft-
ware applications and the gateway means that they can be updated
largely independently of each other. OOD does however provide the
capability to launch directly into graphical applications via AppKit
‘apps’, and this does create a dependency that must be tested for the
apps so installed. Currently MSI provides such convenience apps
in OOD for ANSYS Workbench, IGV, Matlab, Abaqus, COMSOL,
IDL, and Mathematica, but supports over 500 software modules
that receive no special handling for OOD.

Open OnDemand provides broad freedom in how AppKit ‘apps’
are started on compute nodes, giving full control to the admin-
istrator to choose which way works best for any individual app:
managed environment modules, local installation, or through con-
tainers. Additionally, the ability to use apps developed in a user’s
home directory allows quick iteration when developing or customiz-
ing new apps.With Jupyter, there aremore constrainedmechanisms
for launching additional applications in the compute environment:
under user control from a Notebook or CLI session, or via Jupyter-
lab plugins through the launcher. In general, applications launched
in this way must either be Jupyter language kernels (such as python,
R, etc) or must be accessible as a proxied web application via the
jupyter-server-proxy mechanism. As mentioned above, this could
in principle but currently does not at MSI include graphical appli-
cations.

3 COMPARISON: USER SERVICE
OOD presents more complexity (options) to the user than Jupyter-
hub, and as a result needs more documentation and user support
to get new users up and running. Once they are familiar with the
basics, however, OOD quickly opens up a wide variety of interac-
tive workflows via the virtual desktop and the ability to flexibly
choose the resources for the submitted jobs. The virtual desktop
provides users with a familiar graphical interface where they can
perform activities like file management, document viewing, and
coding without needing to learn the command line tools for these
tasks. This makes OOD a flexible on-ramp for novice users who
may be intimidated by the command line interface. Additionally,
because of the AppKit ecosystem, frequently requested features
such as graphical virtual desktops and proxied RStudio Server ses-
sions are easily supported via OOD. In contrast, as configured, our
Jupyterhub instance provides less flexibility in the resources that
can be requested for a job, so users need only select the type of job
they would like from a short list before they can be up and running
in an interactive Jupyterlab environment, with the corresponding
interactive HPC capabilities. However these capabilities do not in-
clude some features, such as graphical desktops and RStudio, that
Jupyter can technically provide but MSI was unable to adequately

467



Comparing Open Ondemand and Jupyterhub as Interactive HPC Gateways PEARC ’23, July 23–27, 2023, Portland, OR, USA

support, perhaps because the Jupyter ecosystem is less focused on
HPC environments.

For users wanting an interactive python or R environment,
Jupyterhub provides a faster way to launch a session. Once in
the Jupyterlab environment, similar file management, editing, and
command line tools are available. However, it poses a user educa-
tion challenge to direct users who need, e.g. a file browser, to an
unrelated application that they may know, if at all, as a python or
data science tool. However, Jupyter notebooks and Jupyterlab are
widely used outside of the HPC community and have a significant
amount of tutorial materials available for free online. So users are
more likely to show up already having experience with Jupyter,
and will have an easier time finding external documentation to fill
in the gaps in their knowledge.

4 FUTUREWORK
In the coming months we will migrate to the latest release of OOD,
which will be our first experience navigating a major version in-
crement. We also plan to integrate XDMoD, which will give OOD

the additional capability to present metrics information. In the
medium term we continue to support Jupyterhub as well; as MSI
continues to develop cloud-integrated workflows, we plan to ex-
plore Jupyterhub’s capabilities to spawn sessions via a wide variety
of technologies beyond cluster scheduler jobs. As our users gain
more experience with OOD we hope to gather comparative user
experience data as well.

REFERENCES
[1] Brian E. Granger and Fernando Pérez. 2021. Jupyter: Thinking and Storytelling

With Code and Data. Computing in Science & Engineering 23, 2 (March 2021), 7–14.
https://doi.org/10.1109/MCSE.2021.3059263

[2] Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, Eric Franz, Trey
Dockendorf, and Brian L. McMichael. 2018. Open OnDemand: A web-based
client portal for HPC centers. Journal of Open Source Software 3, 25 (2018), 622.
https://doi.org/10.21105/joss.00622

[3] Michael B. Milligan. 2018. Jupyter as Common Technology Platform for In-
teractive HPC Services. In Proceedings of the Practice and Experience on Ad-
vanced Research Computing (Pittsburgh, PA, USA) (PEARC ’18). Association
for Computing Machinery, New York, NY, USA, Article 17, 6 pages. https:
//doi.org/10.1145/3219104.3219162

468

https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.21105/joss.00622
https://doi.org/10.1145/3219104.3219162
https://doi.org/10.1145/3219104.3219162

	Abstract
	1 Introduction
	2 Comparison: Deployment and Management
	3 Comparison: User Service
	4 Future Work
	References

