
5

Web Portals for High-performance Computing: A Survey

PATRICE CALEGARI and MARC LEVRIER, Atos, France

PAWEŁ BALCZYŃSKI, Atos, Poland

This article addresses web interfaces for High-performance Computing (HPC) simulation software. First, it

presents a brief history, starting in the 1990s with Java applets, of web interfaces used for accessing and

making best possible use of remote HPC resources. It introduces HPC web-based portal use cases. Then it

identifies and discusses the key features, among functional and non-functional requirements, that character-

ize such portals. A brief state of the art is then presented. The design and development of Bull extreme factory

Computing Studio v3 (XCS3) is chosen as a common thread for showing how the identified key features can

all be implemented in one software: multi-tenancy, multi-scheduler compatibility, complete control through

an HTTP RESTful API, customizable user interface with Responsive Web Design, HPC application template

framework, remote visualization, and access through the Authentication, Authorization, and Accounting se-

curity framework with the Role-Based Access Control permission model. Non-functional requirements (se-

curity, usability, performance, reliability) are discussed, and the article concludes by giving perspective for

future work.

CCS Concepts: • Human-centered computing → Graphical user interfaces; • Information systems →

RESTful web services; • Computing methodologies → Massively parallel and high-performance simulations;

• Software and its engineering → Cloud computing;

Additional Key Words and Phrases: High-performance computing, HPC, HPC-as-a-service, HPCaaS,

software-as-a-service, SaaS, web portal, science gateway, dashboards, RESTful API, user interface, customiz-

able GUI, application templates, job management, cloud computing, service-oriented architectures

ACM Reference format:

Patrice Calegari, Marc Levrier, and Paweł Balczyński. 2019. Web Portals for High-performance Computing:

A Survey. ACM Trans. Web 13, 1, Article 5 (February 2019), 36 pages.

https://doi.org/10.1145/3197385

1 INTRODUCTION

The computing power of supercomputers is continuously increasing. In the November 2018
Top500 [68] ranking, the Department of Energy’s Summit supercomputer, installed at Oak Ridge
National Laboratory (ORNL), reached a Linpack performance of 143.5 petaflops (i.e., 143.5 × 1015

floating point operations per second) on 2,397,824 cores (i.e., processing units), improving its own
performance by 17.3% in 6 months. This is a 54.3% performance increase compared to the former
most powerful computer in the world that reached 93 petaflops one year earlier: Sunway Taihu-
Light, a system developed by China’s National Research Center of Parallel Computer Engineering

Authors’ addresses: P. Calegari and M. Levrier, Atos, Big Data and Security, HPC & Quantum division, extreme factory,

2 rue de la Piquetterie, Teratec Campus, Bruyères-le-Châtel, 91680, France; emails: {patrice.calegari, marc.levrier}@atos.net;

P. Balczyński, Atos, Business & Platform Solutions, Łąkowa 11, Łódź, 90-554, Poland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

1559-1131/2019/02-ART5

https://doi.org/10.1145/3197385

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

https://doi.org/10.1145/3197385
https://doi.org/10.1145/3197385

5:2 P. Calegari et al.

Fig. 1. STORMS radio optimization web GUI with remote processing access to a supercomputer (1998).

& Technology (NRCPC). There is a growing number of computing centers (local, regional, national,
and international) with petaflopic class systems that are increasingly used every day in many do-
mains: biology, engineering, finance, imaging, chemistry, oil and gas, entertainment, medicine,
cosmetics, manufacturing, astronomy, food industry, and so on. High-performance Computing
(HPC) [116] is adopted by more and more scientists to help them solve their complex problems.
All these end-users have a deep scientific knowledge in their domains but not necessarily in HPC.
Moreover, even for those who have HPC knowledge, their time is better spent on their main work
than on HPC questions, hence the need of tools, like web portals, to facilitate the access and use
of HPC resources in an efficient way.

One of the first references to a web-based portal used for running a numerical simulation on a
supercomputer can be found in the proceedings of a conference held in June 1998 [102]. During
this conference, a Java applet-based Graphical User Interface (GUI) with a client–server architec-
ture was shown for running radio wave simulations remotely on a supercomputer in Lausanne
(Switzerland) from a Netscape web browser in Rhodes (Greece), and the graphical results could
be visualized on a simple laptop (snapshots of this web interface “ancestor” is shown in Figure 1).
This work started in 1997, within the European ACTS STORMS project [1, 80, 102] (Software Tool
for the Optimization of Resources in mobile Systems, 1995–1998).

The same year, the UNiform Interface to COmputing and data REsources (UNICORE) project
[71] started with the goal to develop an interface to manage batch jobs running at remote sites.
The first implementation was also based on Java and Java applets.

At the same time, the web application WebSubmit [2, 100, 101], based on Common Gateway In-
terface (CGI) and Tcl, was developed by researchers at the U.S. Department of Commerce’s National
Institute of Standards and Technology (NIST). The project, introduced in 1996 [97], was intended
to simplify access to HPC resources at a single site. The first public release of the WebSubmit portal
was made available at the end of 1998.

These three projects had no relationship to each other, but they started the HPC portal era.
Since then, the need for accessing, using, monitoring, managing, and controlling HPC resources
through a simple web interface has been constantly growing. These web interfaces can be found
under several names: HPC web interfaces, HPC web portals, HPC gateways, science gateways,
HPC boards, and so on. For the sake of clarity and simplicity, we will only use the term “HPC
portal” in the remainder of this article.

Specialized HPC portals have been developed for specific domains (e.g., e-HTPX [76] for struc-
tural biology in 2004, ENES [7] for climate modelling in 2009, CIPRES [103] for phylogenetics

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:3

science in 2010, NSG [48, 81, 114] for neuroscience in 2013) or for the specific needs of large
organizations (e.g., The DoD HPCMP HPC Portal [79] of the U.S. Department of Defense High
Performance Computing Modernization Program). As noted in Reference [74] that presents a Java
portlet approach for accessing distributed environments, many HPC-like web portals have also
been set up for the Grid project among the following: The National Partnership for Advanced
Computational Infrastructure (NPACI) HotPage [118], the Telescience Portal [107], the Cambridge
CFD Grid Portal [120], the CCLRC e-Science Centre (now STFC) HPC Portal [119], and the UK
National Grid Service (NGS) Portal [74].

In 2007, the Distributed Interactive Engineering Toolbox (DIET) [3] project implemented a Grid-
aware web interface [78, 83]. It was used as a basis for the DIET WebBoard in 2009: a Java/Jsp
web interface used to manage the Grid for the French medical research Décrypthon [105] project.
Several HPC portals based on the DIET middleware have been (and continue to be) developed
in projects for dedicated applications. It was also used by the Sysfera-DS portal [11] listed in
Section 5.1.

Many reviews about Grid and HPC services provided through the web have been written: e.g.,
References [86], [95], and [84]. HPC portals are also addressed in more general HPC “best prac-
tices” books like [106]. A large-scale survey [93] was conducted in the USA in 2015 to “measure
the extent and characteristics of the gateway community,” and its authors concluded that: “[. . .]
gateways are an active part of the science and engineering research and education landscape. Many
scientists and educators depend on web-based applications to access specialized resources, particularly
for computational tools and data access and analysis.” In 2018, a survey of efforts in HPC Cloud [104]
reported that “There is a considerable engineering effort to improve usability of HPC cloud, such as the
creation of Web portals or simplification of procedures to allocate and access remote resources.” With
the continuously growing usage of “as-a-Service/Cloud/On-Demand/Grid” services, and with the
increasing need of HPC power for simulating and analyzing always bigger data, HPC portals are
now used daily.

While we use terms like “HPC-as-a-Service” (HPCaaS), “Cloud,” or “service provider,” the HPC
portals we primarily address here are web interfaces focusing on HPC end-users like scientists who
submit daily computation jobs and visualize data remotely. HPC portals are different from Cloud
management portals such as those proposed by Infrastructure-as-a-Service (IaaS) and Platform-
as-a-Service (PaaS) providers for allocating HPC resources on a Cloud. The Cloud management
feature will, however, also be addressed in this article, because it is complementary to HPC portal
core features and tends to gain importance these days.

We begin this article with a use-case overview in Section 2, first discussing how HPC portals
are special compared to other portals. Then we define functional and non-functional requirements
that characterize HPC web-based portals in Sections 3 and 4, and we identify their mandatory, key,
and nice-to-have features among these requirements. In Section 5, a brief state-of-the-art of HPC
portals is presented, comparing the features of the best-known ones. One of the goals of this article
is to study what HPC portals need to address in the Cloud era. In Section 6, we introduce the Bull
extreme factory computing studio (XCS) project: It aims at developing an HPC portal that supports
all the key features identified and discussed in the previous Sections. Then, in Section 7, XCS portal
version 3 (XCS3) is taken as an example of a solution or a common thread to describe possible
architecture and implementation choices that answer the HPCaaS needs. Section 8 discusses how
XCS3 addresses the non-functional requirements introduced in Section 4. The purpose is to share
our software engineering vision, and this could serve as an example for those who want to build
their own HPC portal. Finally, Section 9 concludes this article and gives perspectives for future
work.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:4 P. Calegari et al.

2 HPC PORTAL USE CASES

This section presents what makes HPC portals special, what typical use cases and user categories
are concerned, and which contexts HPC portals are not relevant.

2.1 What Makes HPC Portals Special?

HPC deals with both high-performance computing demands and huge computing input/output
data. The relationships between the portal and these computing and storage back-ends are key and
rather complex to implement in a secure and efficient way. Data processed in HPC environments
can be very confidential (especially for industries or financial organizations). HPC portals have
to deal with these constraints in the way they execute the services on the back-ends (through
impersonation, i.e., run the service “as” an authenticated user), as well as in the way they show or
filter information in the portal views (role-based displays).

Domain knowledge in HPC and in web application development is very different. The design
and integration of an enterprise-grade HPC portal has to be achieved by a team with both a good
understanding of HPC culture and a deep expertise in web development. The first challenge is to
create such a team with both skills. Indeed, to scale and cover all the needs of a large organization
or HPC service provider, several system interfaces (on both web front-end and HPC back-end) must
be understood and implemented together: abstraction layers for job schedulers, HPC software and
middleware interactions, web frameworks and their fast evolving libraries, authentication services,
impersonation tools, remote visualization technologies, and so on. And this should be done by
taking into account HPC use cases and end-users’ needs.

2.2 Typical Use Cases and User Categories

When designing an HPC portal, as for any other software, use cases have to be thoroughly stud-
ied and specified. All HPC portal functions and features are not always used or even used at all,
depending on the use case. Not all HPC portal users have the same objectives or use the same
workflows. The same applies to organizations delivering the HPC service.

The functions and features described in this document match most of the requirements of user
communities (engineers, computer scientists, researchers, scientific software developers, etc.) and
their typical use cases:

• single domain computation (computational fluid dynamics, finite element analysis, molecu-
lar dynamics, financial risk analysis, animation movie rendering, etc.) pre-processing, solv-
ing, post-processing on specific applications,

• multiple domain workflows (code coupling, multi-disciplinary physics),
• parallel code development and testing,
• benchmarking (software and/or hardware).

Most typical categories of organizations delivering HPC services are

• IT departments in an industrial company,
• academic HPC solutions (schools, universities),
• regional or national computing centers,
• Cloud service providers (general purpose hyperscalers, HPC on-demand companies),
• HPC market places (e.g., Ubercloud [70] and Fortissimo [32]).

2.3 Irrelevant Use Cases and Limitations

At the time of writing, it seems that some organization types, such as some Cloud service providers,
as well as HPC research and academic environments, consider that their user communities are

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:5

familiar with HPC concepts and Unix/Linux Command Line Interface (CLI). Therefore, their so-
lutions do not usually include an HPC portal. As opposed to marketplaces and companies in the
industry segment, for whom user-friendly, platform-agnostic, and web interfaces are musts.

Like any other technologies and products, HPC portals cannot solve every problem and come
with some drawbacks. The major reason for not using an HPC portal is the need for some users to
make a significant use of a CLI, especially Unix/Linux shell terminals opened through SSH when
the networking policy rules of the service provider allow it. Advanced HPC experts are often used
to managing their work through CLI, and they may be reluctant to use a GUI or call web services.
Typically, some of them are used to write shell scripts directly in the HPC cluster environment to
partially or fully automate their workflows.

HPC portals help to unify working methods in contexts where many applications and solvers
are used. This naturally implies a lack of flexibility when it comes to reproducing rich application-
specific user interfaces. In a similar way, scheduler-specific and/or advanced options are not always
available through portal abstraction layers.

IT and HPC administrators do not always have the web service system and security-related
culture or the administration skills required to administrate web servers. Moreover, there is a risk,
in terms of software durability, when customers invest for centralizing all HPC services in one
single tool. Both might be issues for the acceptance of HPC portals.

3 HPC PORTAL FUNCTIONAL REQUIREMENTS

This section presents the functional requirements of HPC portals. It lists features and splits them
into three categories. Throughout the article, we will use the following definitions to characterize
the level of importance of the presented HPC portal features:

(1) mandatory features: These features are those that cannot be missing (i.e., if one of them
is not supported then the software cannot be considered to be an HPC portal),

(2) key features: These features are those that are usually expected by users but that are not
always supported. If one or several of them are missing, then certain users might consider
that the HPC portal is not able to handle their application workflows, but the HPC portal
can still be suitable for some use cases,

(3) nice-to-have features: These features do not have to be available. They are not expected
nor requested, except by a minority of users, and they are not often supported by HPC
portals. A nice-to-have feature is often either new or supported by another non-HPC soft-
ware or web service.

However, as we will see in Section 5.2, this feature categorization has been evolving during the
past 20 years and continues to evolve. So it should only be seen as a momentary snapshot of the
HPC portal landscape and not as a permanent classification.

3.1 Mandatory Functional Features

The mandatory features are the minimum set of services that an HPC portal must provide. They
define what a minimal viable HPC portal is.

3.1.1 Job Management. This is the mainspring of an HPC portal: managing batch scheduler
jobs and the applications that these jobs execute. This feature should provide services to execute
the following functions (listed by order of priority):

(1) submit (and resubmit) jobs with parameters that can be of three types:
• scheduler parameters: queue, walltime, number of cores/nodes, priority, dependency,

and so on.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:6 P. Calegari et al.

• application parameters: input file, application specific tuning, version, and so on.
• environment parameters: work directory, paths, libraries, and so on.

(2) monitor jobs: job status, application logs, result files, HPC resource usage, accounting
credit consumption, and so on.

(3) terminate and suspend jobs,
(4) resume suspended jobs,
(5) modify job parameters (mainly batch scheduler parameters).

3.1.2 Data Management. This feature strongly relates to Job Management and can be seen as its
complement. While the HPC community traditionally focuses on computing and performance as-
pects, producing and interpreting scientific data is the ultimate goal of HPC solutions and clusters.
Data management is a keystone of the users’ workflows and implies design and implementation
efforts that match job-related features. Indeed, most compute jobs do process input data, write re-
sults in many different formats and generate log files. All these data need to be remotely managed
by end users. So one of the main challenges for HPCaaS is to make remote data management as
flexible as if it were local. The data management feature usually provides services to execute the
following functions:

(1) upload and download files,
(2) preview file content,
(3) copy, move, rename, delete files,
(4) compress and uncompress archive files,
(5) browse user data spaces (restricted to users’ privileges),
(6) manage file ACLs (Access Control List),
(7) monitor quota(s).

A minimal set of these services was considered sufficient when the first HPC portals showed up
in the HPC community (see Section 5), but nowadays users expect to have all of them.

3.2 Key Functional Features

In addition to the mandatory features listed above in Sections 3.1, the functional features listed
below turn out to be key. The key features are linear satisfiers that customers and users expect to
be supported by an HPC portal even if they are not mandatory (i.e., a minimal viable HPC portal
does not need to support them). The list of key features has naturally grown from our users’ and
customers’ requests since 2004 and also from the observation of the features supported by all the
HPC portals we have seen since we work in this field. This list will continue to evolve with the
customer needs and expectations, and some of the nice-to-have features listed in Section 3.3 might
be added to it in the future.

3.2.1 Multi-tenancy. When an HPC solution is meant to be used and shared by several cus-
tomers while preserving maximum security (i.e., groups of concurrent users from different com-
panies, possibly competitors), or by researchers of different entities, it has to come with means
to

• strictly isolate these customers in separate environments (named tenants),
• manage clusters, queues, applications, users, projects, directory services, and so on, per

tenant,
• aggregate, account, and report each entity resource usage.

The multi-tenancy feature is a must have for any Cloud (or Cloud-like) solution and is especially
complex for HPC services when interconnects, containers, and virtualization come into play.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:7

3.2.2 Multi-cluster. The Multi-cluster feature allows users to manage several HPC clusters si-
multaneously from a unique portal. It is key for compute centers that operate several clusters in a
unique location.

3.2.3 Multi-scheduler. All HPC clusters rely on a job scheduler, a.k.a. batch system, that is re-
sponsible for controlling (queuing, scheduling, etc.) unattended execution of jobs. An HPC portal
should be compatible with most of them (e.g., Slurm, Altair PBS Pro, IBM LSF, SGE/OGE Sun/Oracle
Grid Engine, Torque, OAR). The multi-scheduler compatibility feature makes it possible for an HPC
solution to seamlessly integrate existing and new environments so that a single portal instance can
be used no matter what the cluster management systems look like. Moreover, it permits the trans-
parent replacement of a scheduler by another: As the scheduler type is hidden by the portal, users
do not have to care about its specificities.

Together, the Multi-cluster and Multi-scheduler features allow the administrators to man-
age simultaneously several HPC clusters running different schedulers (e.g., an old system, a
test/validation cell, and a production system). Both features are extremely important to ensure
that an HPC portal can become widely used in the long term.

3.2.4 Multi-directory Service. This is the ability for a portal to identify users against one or more
directory services. For instance, when multi-tenancy is required, these tenants are configured to
identify against distinct directory servers. Typical directory services used in HPC environment are:
Lightweight Directory Access Protocol (LDAP), Network Information Service (NIS), and Active
Directory (AD).

3.2.5 Remote Visualization. The remote visualization feature makes it possible for users to ex-
ecute their interactive two-dimensional (2D)/3D graphical applications on remote servers instead
of their local host and to open visualization sessions to remotely control them. All the graphical
application computing and rendering, including 3D rendering, takes place server-side on GPU-
enabled nodes. The user’s mouse and keyboard inputs are transferred to the server node that, in
return, encodes the graphical scene into pixel frames and sends them as video stream back to the
client’s host. The client is then only responsible for the rendering of the 2D video stream.

The first motive is to make it possible for users to only work on remote data without having to
transfer them back and forth between local host and servers. Typically, computation result files
can be very large (gigabytes to terabytes) and cannot be efficiently transferred through regular
internet or enterprise private networks.

The second motive is to share graphical sessions with users who collaborate from different
locations, each of them being able to interactively work on the same display.

Another motive is intellectual property protection. Remote visualization can be used to increase
data security and confidentiality in some cases. Indeed, HTTPS and related protocols are well
accepted by IT security officers, and easy to secure in firewalls and monitor as opposed to SSH that
many organizations do not accept to provide end-users with. Together with role-based approach
(see Section 4.1.3), remote visualization can prevent certain categories of users from physically
accessing and transferring data while still being allowed to remotely pre- and post-process it.
Such users can interact with the data on their screens, but they cannot download or copy the huge
files that include intellectual property, because only video content (pixels) are actually sent to the
client host, not original data.

3.2.6 HTTP RESTful API. The possibility to fully control web services through an Applica-
tion Programming Interface (API) without requiring a browser is a plus to integrate a web portal
approach into existing workflows or software with non-web interfaces (graphical or not). REp-
resentational State Transfer (REST) is an architectural style often used for web development of

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:8 P. Calegari et al.

APIs [112]. RESTful (or REST) web services communicate with standard HyperText Transfer Pro-
tocol (HTTP) methods such as GET, POST, PUT, DELETE. They involve collections of resources
(e.g., jobs, users, applications, cluster, etc.) with identifiers, for example, /jobs/123 for job with ID
number 123. Resources can be operated upon using standard verbs, for example, “GET /jobs/123”
to get information about job 123 or “DELETE /jobs/123” to terminate this job. The important point
is that RESTful requests are stateless by nature: No state is saved, and each transaction is inde-
pendent. This ensures robustness and scalability. RESTful APIs are now the standard for service
oriented architectures (SOA), business-to-business (B2B) interfaces, and online marketplaces. A
W3C HPC Community Group was created in 2012 to work on APIs that expose HPC resources via
the web [12], but their activity seems stopped (their website has not been updated since 2014). Sev-
eral RESTful APIs were developed for HPC (almost one for each HPC portal listed in Section 5.1):
NEWT API (NERSC) [49], Lorenz API (LLNL) [98], CyVerse science APIs [26], Nimbix API [40],
ActiveEon ProActive API [14], XCS API [31] (see Section 7.3), and so on. To keep up with the
growing demand for service-oriented architectures and micro-services, this feature is key.

3.3 Nice-to-have Functional Features

The nice-to-have features are delighters that customers and users do not expect but that could be
good differentiators for the success of an HPC portal. Here is a non-exhaustive list of such features:

3.3.1 Workflow Engine. A Workflow Engine is used to control the execution of multiple jobs
with dependencies and conditions. To let the users define their complex job workflows, it should
handle the following:

• any required data movement to ensure that the output of a job can be used as input by any
subsequent jobs,

• control constructs such as loops and conditional tests on job variables,
• job dependencies.

3.3.2 User Data Archiving. Once input data have been frozen and computation results have been
produced and validated, they are no longer modified and their size is generally large (gigabytes to
terabytes per job). Keeping such data volume for a long time on an HPC cluster parallel file system
or file storage is expensive, and actually not manageable, because its size keeps increasing over
time. Therefore, the best solution for long-term retention is archiving, which comes with extra
features such as legal archiving regulation support. Demand for HPC user data archiving is grow-
ing, especially in HPCaaS contexts where data are not managed locally anymore. The archiving
functions can be made available directly from HPC portals (e.g., through external API calls).

User data archiving should not be mistaken with “user data backup”: most organizations have
general-purpose disk-based, tape-based, or even Cloud storage-based backup systems and related
software to backup user and system data. These use classical backup policies such as daily incre-
ments, weekly full backups, and so on. However, in most use cases, this is not necessarily relevant
for HPC data being processed. For instance, for a given HPC computation, input data come from
storage systems that are usually backed up using backup-dedicated solutions, and relevant result
files may be archived on safe storage systems for tracking or legal purposes (which topics are out
of the scope of our study). It is commonly accepted in HPC that backup of large result files is not
considered critical, since the consequence of a hypothetical data loss would be negligible: Indeed,
input data can be retrieved from their original storage, and result data can be recomputed if nec-
essary, the cost of a rare data re-computation being much lower than the cost of a systematic data
backup.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:9

3.3.3 Cloud Management. Cloud bursting or hyperscaling (i.e., short-term allocation, provi-
sioning and release of external HPC resources) is more and more seen as an interesting opportu-
nity to extend on-premises HPC solutions without further hardware investments [104]. It makes
this extension possible through an OPerational EXpenditure (OPEX) expense model, which is of-
ten considered more flexible by financial authorities as opposed to CAPital EXpenditure (CAPEX).
Cloud management tools and web portals do exist and are used to orchestrate nodes (usually Vir-
tual Machines), deploy operating systems, install applications (usually packaged in containers),
and administrate HPC clusters on Cloud platforms. These functions may be made available from
an HPC portal directly. One reason for this is to present a unique point of access for all HPC related
services. The HPC portal should then securely handle a large number of concepts related to the
use of resources in the Cloud such as the user or/and the customer credentials to access the Cloud
provider platform(s), credits, VPN/security groups, cluster provisioning playbooks/recipes, and so
on.

4 NON-FUNCTIONAL REQUIREMENTS

The non-functional requirements are the technical characteristics that make an HPC portal suitable
for sustained production. They should be optimized as much as possible for the global quality of
the product. This section presents such non-functional requirements and their relevance to HPC
portals.

4.1 Security

Security is a major concern for all types of web interfaces, especially when it grants access to
a significant amount of confidential resources and R&D data. It should not be seen as a “fea-
ture” but rather as a mandatory quality that is part of a whole policy, including software design
and implementation as well as installation and setup rules, system configuration guidelines, good
user practices, and network security monitoring. One key aspect, among many others, is that a
web server runs as a single system user with little or no privilege (such as nobody, portal, etc.)
and needs a safe impersonation mechanism to trigger the execution of a task on behalf of a real
user account. Figure 2 shows the security layers that content data (files, requests, video streams,
etc.) and credentials have to go through between an HPC portal user and a remote HPC cluster.
Each layer must be addressed without inducing any breach in the security chain. In this context,
an HPC portal is mainly responsible for authentication (see Section 4.1.2) and authorization (see
Section 4.1.3) controls. External accesses need to be secured by using HTTPS certificates and cryp-
tographic protocols such as Transport Layer Security (TLS) defined in RFC2246 [77] in 1999 and
updated in RFC6176 [109] in 2011.

4.1.1 Physical Security. From a general point of view, user data and thus user activity is often
more secured in data centers than on laptops or on local workstations (e.g., in SMEs or home of-
fices that are not always properly secured). The security/confidentiality is ensured by the physical
protections of the data centers together with the web services and HPC portal software intrinsic
security properties.

4.1.2 Authentication. Authentication is the mechanism that allows a system to securely ascer-
tain that a user really is who he/she claims to be. In other words, the authentication process checks
credentials (e.g., password, token, etc.) to prove the identity (e.g., login name) of a user.

The importance of authentication for HPC portals depends on their organizational contexts
and technical environments. Typically, a self-made, in-house developed solution for a single unit
on a single location inside one organization may not require enterprise-grade authentication.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:10 P. Calegari et al.

Fig. 2. Security layers for HPC portals.

Conversely, HPCaaS solutions provided by major compute centers need to implement sophisti-
cated and reliable authentication systems.

In case an HPC portal solution has to deal with several flavors of authentication systems, two
angles must be considered:

• the list of authentication technologies to be supported to cover target use cases,
• the degree to which an HPC portal needs to take part in the authentication process.

Possibilities range from the portal authenticating users with its own user and password database to
entirely delegating authentication to operating system-level or external services such as directory
services and/or Single-Sign-On (SSO) services.

The ability to support a large range of external authentication services is a logical goal to be
compatible with as many compute center security policies as possible. But having this configurable,
flexible, and maintainable turns out to be complex at many levels: a large range of technologies, op-
erating system specific implementations and behaviors, support of organization-specific credential
management policies, compatibility with Java-based portals, and so on.

Due to the complex nature of HPC workflows and execution chain, there is an increasing focus
on Kerberos network authentication protocol [43, 115]. In computing centers where the environ-
ment is fully controlled by Kerberos, users are granted “tickets” by the Kerberos server, allowing
them to access the HPC resources without typing their login/password multiple times or having
services passing passwords to each other over the network. They are automatically authenticated
all along the execution chain as long as the ticket has not expired.

Kerberos is a key feature for an HPC portal product, because it is used by most of the largest HPC
computing centers and large companies. For these organizations, the HPC portal Kerberos support
is absolutely mandatory, since in a Kerberized environment each and every service including the
portal must be protected with Kerberos tickets.

Another aspect is that Microsoft AD, which is a standard in large industrial companies, relies
on Kerberos as well. From a Linux-based HPC portal solution, a possible gateway between both
worlds is to go through

• Linux SSSD (System Security Services Daemon) [67] based on RFC2307 [90], and
• GSS-API (Generic Security Service Application Program Interface), the Kerberos wrapper

published as RFC1508 [96].

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:11

4.1.3 Authorization. Authorization is the mechanism that allows a system to determine what
an authenticated user is allowed to do. It checks the level of user permissions to access (e.g., read,
write, create, delete) secured resources (e.g., files, jobs, clusters, applications, etc.).

To enable, disable, or adapt content to be managed and displayed in accordance with security
policies and authorization mechanisms, roles must be assigned to all users. Role-Based Access Con-
trol (RBAC) is a permission model that allows fine-grained access control management: It grants
user privileges that exactly match the set of features users are allowed to use and information they
are allowed to see. How roles are configured to grant access to content and services is controlled
by the Authentication, Authorization, and Accounting (AAA) security framework.

AAA is a security framework that aims at controlling access and usage of computer resources
with policies. Each and every access to a feature, function, resource, and/or view is configurable,
checked against a role, and traceable in AAA. As a consequence, this allows administrators to
easily modify user authorization scopes without requiring any modification in the portal source
code.

4.1.4 Accounting. Accounting is the mechanism that allows a system to track, record, and store
the activities of users once they are authenticated and authorized. The recorded information can
be used for

• accountability to identify users and determine their responsibility for past activities, and/or
• billing to charge users based in the resources used (data accessed, data transferred, compute,

storage, applications, portal features, etc.) in terms of duration (e.g., computation elapsed
time, pure CPU time, access time, etc.), quality (e.g., computation precision level, solution
accuracy, confidentiality level, SLA, etc.), and size (e.g., number of nodes, memory size, file
size, CPU power, etc.).

4.2 Usability

An HPC portal, like any software with a user interface, should be easy to use, simple, clear, intu-
itive, and responsive. The usability of HPC portals mainly depends on the following properties:

• Operability. An HPC portal should be easy to operate and control. In other words, its
functions should be clearly defined as well as easy to find, execute, and monitor. Its interface
should be as simple as possible while offering all the expected functions. For example, it
should ensure that the number of necessary interactions (e.g., the number of necessary
“clicks”) to achieve a desired effect (e.g., a job submission) is reduced to a minimum.

• Learnability. HPC portal users should be able to learn how to use it with effectiveness,
efficiency, freedom from risk, and satisfaction in the context of their work. In other words,
the user interface should be intuitive and flexible enough to adapt to all business workflows.

• User interface aesthetics. HPC portal GUI aesthetics depends on the graphical design of
the web pages (colors, element shapes, logos, fonts, etc.) and the layout of their functional
web elements (frames, buttons, menus, etc.). Aesthetics is important for IT administrators
and Cloud providers, since the portal web pages present the brand image of their data center,
university, or company to their internal users and/or external clients. Aesthetics is also
important for users who should feel pleased and satisfied when interacting with the GUI.
For example, users should not be disturbed or distracted by any visual element.

To fulfill these requirements, the following features are key.

4.2.1 HPC Application Template Framework. This is a simple and documented tool-set aiming at
providing administrators with the ability to create/update job submission web forms (application

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:12 P. Calegari et al.

“publication”) and job submission scripts (that are run once the form is submitted). Ideally, a single
template model should cover all possible cases. In this case, job submission methods are unified
and homogeneous, no matter what the applications do and look like.

4.2.2 Customizable GUI. Each user is unique and has unique requirements and constraints in
his work. The GUI should be highly customizable to be able to easily present any user work-
flow and allow its execution. The portal administrators and the end-users should be able to cre-
ate/modify/save/share the user interface layout and look&feel according to their needs. Together
with RBAC, a customizable GUI makes it possible to fulfill many divers requirements from different
user communities with a unique portal instance.

4.2.3 Responsive Web Design (RWD). A user interface with RWD makes it possible to optimize
the display of web GUI elements according to the display geometry and resolution of the end-
user’s terminal. Typically, it automatically re-dispatches elements of dashboards depending on
which device the web application is accessed from: workstation with large screen, laptop with
small screen, tablet, smartphone, and so on.

4.3 Performance

HPC portals have to satisfy HPC specific constraints that do not exist for other web portals. An
HPC portal is intended to hide and replace the user interaction with job schedulers, taking into
account that job schedulers were designed to be driven through the command line by humans
and not to receive a large amount of requests from a web application. On the front-end, hundreds
(or even thousands) of users want to follow the status of their jobs and they might refresh their
web page very often. On the back-end, an HPC batch scheduler handles thousands (or tens of
thousands) of jobs and returns information without any time constraint. This implies that users
want to have an up-to-date status instantly while on the back-end a call to the scheduler server
can take several seconds (or minutes when hundred of thousands of jobs are monitored) before
returning a complete status. This is different from a standard website where millions of users send
requests about data that are immediately available whether it changes at a high or low frequency
rate.

Performance requirements for an HPC portal are not more challenging than for a social media
website, but it has to deal with a major bottleneck: the job scheduler (see Section 3.2.3). Since the
primary interface of HPC portals with the cluster is the batch system service, and since some batch
systems are synchronous and/or weakly threaded, they can be counter-responsive when loaded
by a large number of requests. The main consequence is a risk for the web portal and the service
to get overloaded and/or stalled.

Because of these near-real-time constraints, an HPC portal web server should behave like a
cache: It should gather information from the HPC cluster(s) as quickly as possible (knowing that
the scheduler response time is a limit) and it should broadcast the latest known information to
the users independently from the information gathering frequency. If user update requests were
directly sent to the HPC cluster, then the scheduler server would quickly be overloaded, and hence
there would be a serious degradation of the service for all users (even those working locally on
the HPC cluster without using the portal).

4.4 Reliability

Since the goal of an HPC portal is to provide a service to a potentially large number of high-profile
users, such service requires protection against data loss, data corruption, as well as downtime and
system failures. However, this protection does not rely on the portal implementation but rather

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:13

on adequate IT practices, processes, and external tooling. This includes backup, High Availability
(HA)/Fault tolerance, and Disaster recovery.

4.4.1 Portal Data Backup. As already touched upon in Section 3.3.2, most organizations have
general-purpose backup systems and related software. They can be used to back up data and sys-
tems involved by HPC portals. This can include user profiles, HPC cluster setup configurations
(servers, services, and database), history, accounting data, and so on.

4.4.2 HA/Fault Tolerance. HPC web portals are more and more considered as important ser-
vices, since downtime often impacts a large number of high-profile users. This becomes critical
in commercial HPC-as-a-Service offers where Service Level Agreement (SLA) may be governed
through contracts between service providers and customers.

4.4.3 Recoverability. Disaster recovery is the ability for services and related user data to sur-
vive a major accident, such as the physical destruction of a data center and IT infrastructure on a
given site (resulting from any kind of major hazard). Most of disaster recovery plans (DRP) involve
elaborate and expensive data center-to-data center high-performance networking, clustered ser-
vice mechanisms, and data replication mechanisms. From our experience, disaster recover plans
covering the HPC scope are quite rare, since HPC is in general not considered a critical activity in
most organizations (as opposed to ERP, CRM, commercial services, and the like). Large organiza-
tions owning more than one data center sometimes split their HPC infrastructure in one or more
parts for this reason. The HPC portal can then just be considered as any other service/software in
the DRP.

5 STATE-OF-THE-ART OF HPC PORTALS

This section reviews the list of the most significant multi-domain (as opposed to domain-specific)
HPC web portals. It presents a comparison matrix of their features and deduces some trends from
it.

5.1 HPC Portal List

Numerous HPC portals have been developed in the past years. The most significant multi-domain
ones are listed in Table 1. This list was built by exchanging with HPC portal developers and distrib-
utors by gathering information from our HPC clients and, finally, by asking to all of these contacts
if they knew about any other “unlisted” HPC portal to be sure that none of the significant ones was
forgotten. All of the 24 listed HPC portal products are (or have been before being discontinued)
available for internal on-premises usage.

Many HPC projects are developing their own community-specific web portal from scratch or
based on open source resources. An example is given by the EasyGateway team in Reference [87]
who developed a science gateway for meteorological forecast based on #2 Apache Airavata. Listing
all those project-specific or community-specific portals is, however, not the purpose of this review.

Some HPC Cloud providers have developed web portals for their own usage (e.g., Penguin Com-
puting Scyld Cloud [62], Sabalcore [36], and Portal). With these web portals, job and file manage-
ment is done through a Command Line Interface (CLI), unlike the listed HPC portals that use a
GUI. Moreover, these web portals are not sold, rented, or open sourced, so they cannot be installed
on-premises. That is why we did not list them in Table 1.

A new type of HPC portal exists for web-based HPC applications. For example, the MIT Super-
Cloud portal workspace [110] provides authentication, encryption, and access control to enable the
secure exposure of web services running on HPC systems. Such a portal acts as a reverse proxy
for accessing web applications ran as HPC jobs by end-users. It is worth citing this new use case

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:14 P. Calegari et al.

Table 1. List of the Major HPC Portals Available for Internal On-premises Usage

HPC portal name (with year of first release) Comments

#1 Agave ToGo [16] with CyVerse Science APIs [26] (2013) Open source
#2 Apache Airavata [18, 99, 108] Django Portal (2003) Open source
#3 Compute Manager [23] by Altair (2009) Replaced by #14 in 2018
#4 eCompute [4] by Altair (2003) Replaced by #3 in 2009
#5 eBatch by Serviware/Bull (2004) Replaced by XCS1 in 2011
#6 EnginFrame [28] by NICE/Amazon (1999)
#7 HPCDrive [10] by Oxalya/OVH (2007) Discontinued in 2015
#8 HPC Gateway Appli. Desktop [13, 37] by Fujitsu (2015)
#9 HPC Pack Web Components [47] by Microsoft (2008) On Microsoft Windows only
#10 JARVICE Portal [40] by Nimbix (2012)
#11 MOAB Viewpoint [15] by Adaptive Computing (2006)
#12 Open OnDemand [33, 91] (2017) Open source
#13 Orchestrate [54] by RStor (2018)
#14 PBS Access [56] by Altair (2018)
#15 Platform Application Center (PAC) [8, 111] by IBM (2009)
#16 ProActive Parallel Suite [14] by ActiveEon (2014) Open source
#17 Sandstone HPC [113] (2016) Open source
#18 ScaleX Pro [61] by Rescale (2012)
#19 SynfiniWay [9, 89, 117] by Fujitsu (2010) Replaced by #8 in 2015
#20 Sysfera-DS [11] by Sysfera (2011) Discontinued in 2015
#21 UNICORE Portal [71, 85] (project:1997, v7:2014) Open source since 2004
#22 WebSubmit Portal [2, 97, 100, 101] by NIST (1998) Last update in 1999
#23 XCS1/XCS2 [30] by Bull/Atos (2011/2014) Replaced by #24 in 2018
#24 XCS3 (described in Sections 6 and 7) by Atos (2017)

that is the result of the convergence of traditional HPC, Big Data, and Cloud. However, portals of
this type were not included in the list, because they are too different from those we discuss in this
article.

The HPC portal landscape evolves extremely quickly. Hence, 4 of the listed portals have had a
short life and are already discontinued: #4 eCompute and #19 SynfiniWay were replaced by new
products while #7 HPCDrive and #20 Sysfera-DS have undergone company closing. And 2 other
portals are being replaced in 2018: #3 Compute Manager, and #23 XCS2.

Major Cloud players have HPC offerings (e.g., Microsoft Azure Big Compute [46], Google Cloud
Platform (GCP) HPC [35], and Amazon Web Services (AWS) HPC Portal [17]) that should not
be mistaken for “HPC Portals” as addressed in this article. However, these Cloud offerings are
compatible with most of the HPC portal products listed in Table 1, and some of them can propose
their own HPC portal solutions. Microsoft has a native HPC portal (#9 HPC Pack Web Components)
for Windows clusters and, in August 2017, it acquired Cycle Computing with its CycleCloud web
GUI [25] aimed at managing HPC cluster in the Cloud. In February 2016, Amazon acquired NICE
with its #6 EnginFrame HPC portal, which powers CloudFrame, a Self-Service Provisioning portal.
In spite of these acquisitions and product discontinuations, in the end, at least 16 different actors
are active in the HPC portal domain, which is a lot for such a niche market. In Table 1, we see
that from 2003 to 2018 there has been at least one new actor distributing a new HPC portal every
year (except in 2005 and 2015). This proves that this domain is very dynamic and important at the
moment.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:15

It can be noticed in Table 1 that 6 HPC portals are open sourced:

#1 Agave ToGo that started in 2011 as a pilot project for the iPlant Collaborative.
#2 Apache Airavata that had a long history within academia at the Extreme Computing Lab at

Indiana University since 2003, before its new home in Apache software foundation where
its architecture was revamped.

#12 Open OnDemand that is based on the Ohio Supercomputer Center’s OSC OnDemand plat-
form [52],

#16 ProActive Parallel Suite whose core technology [82] was initially developed by a team of
45 developers at INRIA (French institute for Computer Science), and that has been extended
by ActiveEon, a spin-off from INRIA created in 2007.

#17 Sandstone HPC that was developed at University of Colorado Boulder in 2017.
#21 UNICORE Portal that started in 1997 within the framework of the UNICORE project, a

research project funded by the German Ministry of Education and Research, and that was
open sourced in 2004.

Moreover, two other portals, from the early years, had their sources available to customers/
users:

#5 From 2004 to 2011, eBatch portal source code was provided to customers who were free to
modify it, provided that they maintained their modified version on their own.

#22 WebSubmit was mainly used within NIST organization for internal needs, but the source
code could (and still can) be freely downloaded at Reference [2]. The code was updated for
the last time in July 1999.

Most of the widely used HPC portals are commercial products for which it is difficult to get ac-
curate information about number of instances, users, applications, and implementation details.
Customers are anyway not likely to publish such information. We gathered all the public infor-
mation we could find to write this short review, but we could not get all the detailed information
we would have liked to present. However, this review is broad enough to give a rough idea of the
main trends in the domain and to serve as a basis for the study presented in this article.

5.2 HPC Portal Review

Table 2 shows a comparison matrix of HPC portal features. It compares the features of the lat-
est release of each HPC portal listed in Table 1. By definition, mandatory features introduced
in 3.1 are supported by all HPC portals so they are not shown in the comparison matrix. Addition-
ally, the non-functional requirements (security, usability, performance, and reliability) discussed in
Section 4 would need extensive qualitative benchmarks to be completely and fairly compared: Such
significant work is out of the scope of this article. We chose to compare the key and nice-to-have
functional features listed in Sections 3.2 and 3.3, as well as some features identified among the
non-functional requirements and whose support is easy to check: three for security authoriza-
tions (introduced in Section 4.1.3), and three for usability (introduced in Section 4.2).

The matrix was filled in with information coming from publicly available documents (scientific
articles, brochures, product websites, etc.) and from HPC portal users, developers, and distributors.

In Table 2, we can see that only 2 HPC portals offer all of the 15 features (#8, #16), and that
2 others offer all of the 12 key features (#6 and #24) selected for this study. When we only look
at the 16 currently available HPC portals (i.e., not being replaced or discontinued), we observe
that

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:16 P. Calegari et al.

Table 2. Comparison Matrix of HPC Portals Key and Nice-to-have Features

Key functional features
Nice to have

functional features Key non-Functional features

M
u

lt
i-

te
n

an
cy

M
u

lt
i-

cl
u

st
er

M
u

lt
i-

sc
h

ed
u

le
r

M
u

lt
i

D
S

R
em

o
te

v
iz

H
T

T
P

R
E

ST
fu

l
A

P
I

W
o

rk
fl

o
w

en
g
in

e

U
se

r
d

at
a

ar
ch

iv
in

g

C
lo

u
d

m
an

ag
em

en
t

R
B

A
C

A
A

A

K
er

b
er

o
s

H
P

C
ap

p
li

ca
ti

o
n

te
m

p
la

te
s

C
u

st
o

m
iz

ab
le

G
U

I

R
W

D

#1 Agave ToGo � � � � ✗ � ✗ � � � � � � � �
#2 Apache AiravataTM � � � � ✗ � � � � � � � � � �
#3 Compute Manager14 � � ✗1 � � � � ✗ ✗ � � � � � ✗

#5 eBatch14 ✗ � � ✗ ✗ ✗ � ✗ ✗ ✗ ✗ ✗ � ✗ ✗

#4 eCompute14 � � ✗1 � ✗ ✗ ✗ ✗ ✗ ✗ � � � � ✗

#6 EnginFrame � � � � � � ✗ ✗ ✚2 � � � � � ✗

#7 HPCDrive14 � ✗ � � � ✗ ✗ ✗ ✗ � � � ✗ ✗ ✗

#8 HPC Gateway � � � � � � � � � � � � � � �
#9 HPC Pack Web Com. � ✗ ✗3 ✗ ✗ � � ✗ �4 �5 �5 �5 ✗ ✗ ✗

#10 JARVICE � ✗ � ✗ � � � � �6 � � ✗ � ✗ �
#11 MOAB Viewpoint � ✗ � � � � � � � � � ✗ � � �
#12 Open OnDemand � � � � � ✗ ✗ ✗ ✗ � � ✗ � ✗ �
#13 Orchestrate � � � � � � ✗ ✗ � � � ✗ � � �
#14 PBS Access � � ✗1 � � � � ✗ ✚7 � � � � � �
#15 PAC � � ✗8 � � � � ✚9 � � � � � � �
#16 ProActive Parallel S. � � � � � � � � � � � � � � �
#17 Sandstone HPC � � ✗ � ✗ � ✗ ✗ ✗ ✗ � � ✗ ✗ �
#18 ScaleXTM Pro � � � � � � � � � � � ✗ � � ✗10

#19 SynfiniWay14 ✗ � � � ✗ ✗ � � ✗ � � � � ✗ ✗

#20 Sysfera-DS14 � � � ✗ � ✗ ✗11 ✗ ✗ � � ✗ � ✗ �
#21 UNICORE 7 Portal � � � � ✗ � � ✗ ✗ � ✗ ✗ � � ✗

#22 WebSubmit14 ✗ ✗ �12 � ✗ ✗ ✗ ✗ ✗ ✗ � ✗ ✗ ✗ ✗

#23 XCS2 14 � � � � � ✗ ✗ � ✗ � � � � � ✗

#24 XCS3 � � � � � � ✗ ✗ ✗ � � �13 � � �
Rows of HPC portals being replaced or discontinued are grayed. (� = Supported ✗ = Not supported ✚ = Indirectly sup-

ported via an external software/portal or through compatible web services)
1Altair PBS Professional (commercial or open source) scheduler only. 2Supported by CloudFrame and MyHPC solution on

AWS only. 3Microsoft HPC Pack scheduler only. 4On Microsoft Azure only. 5Through Active Directory services. 6For

Nimbix Cloud management. 7Supported by PBS Control. 8IBM Spectrum LSF scheduler only. 9Supported by IBM Spec-

trum Protect. 10Under development. 11Supported by most releases but not by the last one. 12LSF scheduler and NQS

(Network Queuing System) only. 13With XCS v3.7 and higher. 14Replaced or discontinued.

• all of the 15 features are supported by at least 50% of them,
• the most implemented features (i.e., supported at least by 15 portals) are Multi-tenancy and

HTTP RESTful API, as well as the AAA and RBAC security features,
• the least implemented features (i.e., supported by less then 10 portals) are Multi-scheduler,

Remote visualization, Kerberos, and, not surprisingly, all the nice-to-have features.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:17

When we compare the features supported by the currently available HPC portals with those
of the replaced or discontinued ones, we observe that three of them were almost not (or not at
all) supported in the past: HTTP RESTful API, Cloud Management, and RWD. HTTP RESTful
API is now supported by almost every portal. Nowadays, RWD is supported by every modern GUI
software. The Cloud Management feature is now available with most of the new portals (10 directly
and two through an external software/portal), which shows a growing interest for HPC usage in
the Cloud. These three points prove that the needs for the features evolve quickly over time.

6 THE EXTREME FACTORY COMPUTING STUDIO PROJECT

This section presents the eXtreme factory Computing Studio (XCS) portal. It first gives an overview
of its history and then lists the functional features of its current version (v3).

6.1 Brief History

We had a first experience in HPC portal development around 2004. We had to face an increas-
ing demand for web front-ends to HPC solutions so we built eBatch, a simple Tomcat/JSP (Java
Server Pages)/Servlet based portal aiming mostly at hiding job scheduler and job submission com-
plexity from users. The other main goal was to provide HPC services across an enterprise WAN
where SSH connections were not always allowed. It was flexible enough to rapidly adapt to many
site-specific HPC implementations, job schedulers, and job submission scripts. However, many
enterprise-grade features were missing: state-of-the-art authentication mechanism, remote visu-
alization, accounting, multi-tenancy, and so on.

In 2008, we decided to leverage this experience and to develop an enterprise-grade HPC portal
including remote visualization capabilities, which turned out to be the missing piece enabling
100% remote HPC user experience. The new project was named eXtreme factory Computing Studio
(XCS).

6.1.1 XCS1. The XCS project started in May 2009. For the first portal implementation, we se-
lected the portal framework Liferay Portal [44] (against eXo [53]), because it included some ready-
to-use features that we needed (users/groups management, content management with look cus-
tomization, LDAP integration). Moreover, Liferay had been declared “Best open source Enterprise
Portal” by InfoWorld [5] in 2008 and was very well ranked when compared to other portal frame-
works (see Reference [75]). For the core engine that handles the interactions between the web
environment and the HPC cluster (i.e., scheduler), we chose Globus [58] for the same reasons: It
had ready-to-use features that we needed (multi-scheduler support, etc.) and was popular. Our
main goal was to accelerate the Time To Market (TTM) for our portal and this goal was success-
fully reached in May 2011, when XCS release 1.0 was announced and started to be used at our
facilities.

At the beginning, the XCS portal has been developed for our own HPC on-demand offering
exclusively. But we quickly understood that other computing centers wanted to have their own
portal on-premises, so we packaged it as a product.

Then we started to learn from our customer experiences and user feedback, and we improved
this first release: We replaced Globus by our own “cluster integration layer,” because Globus
was too complex for the simple tasks we needed and too difficult to maintain. We drastically re-
duced the number of steps required to execute actions from the portal (submit jobs, download files,
etc.), and we added support for remote visualization tools (e.g., XRV [30] or TurboVNC [69]). The
result was XCS2.

6.1.2 XCS2. The XCS2 portal has been in production on a few tens of sites, with a few hundred
HPC applications integrated and used by a few thousand users. Over the years, its code grew, and

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:18 P. Calegari et al.

most of the Liferay features were replaced with custom implementations (e.g., to support NIS in
addition to LDAP). This required the creation of a duplicated user database that had to be main-
tained and synchronized. That also made development team responsible for third-party libraries
and it slowed down development of new features. Finally, it turned out that Liferay content man-
agement feature was almost not used and lacked flexibility for XCS2 user pages customization.
So, in 2015, even though XCS2 was satisfactory, we decided to refactor it thoroughly with modern
concepts in mind.

XCS2 user interface was lacking support for many new web trends (e.g., GUI edition and cus-
tomization) desired by customers and it was difficult to maintain it as a monolithic (i.e., not modu-
lar) software. The RESTful API added in latest versions of XCS2, even though simple and only
end-user oriented, proved its usefulness. These facts motivated us to propose a new modular
approach.

6.1.3 XCS3. The XCS2 RESTful API was extended with all missing endpoints, including all
administrative ones, and it became an independent application: the “XCS3 Java Core RESTful API
web application,” upon which we started to build the new web GUI. XCS3 GUI is considered as
an application GUI rather than as an enterprise portal. We established the following high-level
specifications:

• Architecture:

—a modular architecture,
—a modern design pattern appropriate to the MVW (Model-View-Whatever) technology,
—an independent user account management (i.e., not imposed by the framework).

• Implementation:

—a sustainable web framework,
—an easy to maintain and upgrade software with smooth maintenance effort,
—an extensive list of supported platforms for the server side,
—an extensive list of supported browsers for the client side (i.e., the latest versions of

Chrome, Firefox, Safari, Internet Explorer, and Edge).
• Features:

—support of all the mandatory and key functional features listed in Section 3.1 and 3.2,
—fulfill the non-functional requirements listed in Section 4.

We made a comparative case study of the latest web development frameworks (e.g., Angu-
larJS [6], React [57], extJS [29], Ember [27], etc.), involving leaders of several similar projects.
AngularJS was finally selected as main framework for a new XCS3 user interface web application,
because it was one of the framework providing all the necessary features and it had a large back-
ing community: It had a high chance to be a sustainable choice, because many companies were
investing in its development, a lot of web applications were based on it, and its popularity was
making it widely known among new developers.

XCS3 has been designed with all the functional features listed in Section 3 in mind. This in-
duced the need to support two user experiences: handling batch jobs and handling interactive jobs
(typically remote visualization sessions). XCS3 design was also driven by security, efficiency, and
usability to best answer the non-functional requirements listed in Section 4. It directly impacted
design and technology choices as described in Section 7.

All the knowledge gathered during XCS2 software life was extremely valuable for the new de-
velopments but less than 15% of its original code was kept, so XCS3 is really a brand new software.

XCS3 has been released mid-2017 (at the time of writing, the latest release is v3.7). It is used
for production on several sites and has already been tested with more than 60 HPC simulation

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:19

applications (ANSYS Fluent and CFX, CD-Adapco StarCCM+, NUMECA Fine/Marine, Principia
Deeplines, OpenFoam, LSTC LS-DYNA, ESI VPS / PAM-CRASH, Gromacs, Namd, Blender, Das-
sault Systèmes SIMULIA CST Studio Suite, Exa PowerFLOW, etc.), as well as visualization software
(Paraview, Ensight, native GUIs of the applications listed above, etc.). So far, no limitations were
found with the XCS 3 application integration framework: All applications requested by users could
be integrated and exposed in the portal. In a general manner, any new batch or interactive appli-
cation can be easily exposed and executed (as explained in Section 7.5).

6.2 XCS3 Functional Features

XCS3 aims to be used both for customers on-premises and for HPC on-demand Cloud services
delivered by our data center, third-party providers, or organization computing centers. It supports
all the mandatory and key functional features introduced in Sections 3.1 and 3.2. Here are some
details about the way these features are provided:

• Job management (see Section 3.1.1)
XCS3 comes with the ability to create and edit web forms that present all the necessary job
submission parameters for a given HPC application. Jobs can be submitted through these
web forms. They can also be monitored (status, resources used, etc.), detailed (parameters,
etc.), resubmitted, and terminated.

• File management (see Section 3.1.2)
XCS3 file browser presents to users the mount points (user-browseable data spaces) selected
by the Portal or Customer Administrator. Files can be uploaded, downloaded, copied, moved,
deleted, compressed, and uncompressed. They can also been previewed with contextual
handling (through file extension) of most major media formats such as texts, formatted
documents, images, videos, and audios.

• Multi-tenancy (see Section 3.2.1)
A single XCS3 portal instance supports the management of several distinct organizations
(companies, entities, etc.) making it suitable for HPC service/Cloud providers.

• Multi-cluster (see Section 3.2.2)
A single XCS3 portal instance can address several clusters, potentially using distinct job
schedulers.

• Multi-scheduler (see Section 3.2.3)
XCS3 is compatible with all major HPC schedulers (Slurm, Altair PBS Pro, IBM LSF,
SGE/OGE Sun/Oracle Grid Engine) as well as with OAR, a more confidential one used in a
few Universities (e.g., Nice, Luxembourg).

• Multi Directory Service Compatibility (see Section 3.2.4)
XCS3 OAuth-based RESTful API implements a standard and uniform front-end layer to
major directory service back-ends. Note that OAuth does not federate identities, that is, if
several customers (declared as independent tenants in XCS3) have their own distinct di-
rectory services then each login name must be unique (i.e., the same login name cannot be
declared in different directory services configured behind the portal). XCS3 supports LDAP,
NIS, and AD with LDAP attributes. There are two possible settings:
—Users and Linux groups (i.e., Projects) information can be imported into XCS3 in Read-

Only mode from the directory service(s). This is the only way to do when directory ser-
vices are configured in Read-Only mode.

—Users and Linux groups (i.e., Projects) can be created by XCS3 administrator if the direc-
tory services are configured in Read-Write mode. Note that only LDAP can be configured
this way.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:20 P. Calegari et al.

• Remote visualization (see Section 3.2.5)
Most remote visualization technologies can be integrated into XCS3 but at the moment only
two are actually used: TurboVNC [69] and XRV [30] (eXtreme factory Remote Visualizer):
—TurboVNC is a widely used remote desktop software. It was first released in 2004 and is

a derivative of Virtual Network Computing (VNC).
—XRV is an enterprise distribution of the open source Xpra [72] software. Xpra was created

in 2008 and is partially funded by the XRV/XCS project since 2012. It uses heuristics
to automatically adjust image quality and speed based on measured network latency,
network bandwidth, image size, and image movements. Based on the measured data, it
selects dynamically the most appropriate picture/video compression codec and optimizes
its parameters. XRV bandwidth consumption is lowered thanks to its seamless integration
of individual remote windows directly into the client’s desktop session (i.e., by default,
only the application windows are transferred, not the whole desktop).

XCS3 supports remote visualization session sharing between users, provided that the re-
mote visualization technology supports it too, which is the case for XRV and TurboVNC.
A user can attach a list of coworkers to each of his/her remote visualization session. The
coworkers are then authorized to visualize and interactively work on these shared sessions
together until the session owner disables the sharing authorization or stops the session.

If needed, remote visualization sessions can be scheduled for future access via a shared
calendar. As sessions are processed as interactive jobs, this induces the use of advanced
reservation mechanisms in the job schedulers (for those that support this feature). These
are especially useful for planning shared sessions involving users from several locations,
for instance.

The live video stream of remote sessions can be visualized using a software installed on
the client host (e.g., an XRV or TurboVNC client software), or using the HTML5 in-browser
remote visualization client that does not involve any specific software on the client side. In
the latter case, the user can visualize the graphical sessions in a modal window (i.e., a child
window of the web application in front of the XCS3 dashboard) or in separate browser tabs.

• HTTP RESTful API (see Section 3.2.6)
All of the XCS3 core features are accessible through its HTTP RESTful API. An overview
of its endpoints is given in Section 7.3. The XCS3 HTTP RESTful API is a Software-as-a-
Service– (SaaS) oriented API primarily dedicated to HPC, although it could also easily be
used for SaaS solutions in other domains. It was patented [94] by its creators.

6.3 Functional Features Not Supported in XCS3

The following nice-to-have features (introduced in Section 3.3) are not implemented in XCS3. Some
explanations are given below.

• Workflow Engine (see Section 3.3.1)
In XCS3, job dependency support and application templates with conditional fields (see Sec-
tion 8.2) are usually powerful enough to cover most of the simple workflow requirements
(i.e., no conditional loops, only simple decision and termination tests, no interactivity).
This satisfies most use cases of our users. Complex workflows are often included in busi-
ness/domain specific web portals but are not used in general-purpose HPC portals most of
the time (this observation is based on our experience working with HPC users for 20 years).
A graphical workflow editor is, however, a nice feature even for simple workflows. So we
are considering implementing one in the future.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:21

• User Data Archiving (see Section 3.3.2)
In the first version of XCS (v1.0 in 2010), an archiving feature was implemented together
with the file management feature. It was using a third-party long-term keyword-based
archiving API. But since no user actually ever used it, we disabled it in XCS2. As a con-
sequence, we did not re-implement it in XCS3. As far as we know, customers have clearly
not expressed any urgent need of data archiving or backup related tools in HPC portals so
far, probably because these are handled elsewhere in the organization, and because HPC
data have a basic lifecycle and become obsolete soon after computing is over. Long term
archiving out of the HPC solutions such as object storage, potentially on the cloud, looks
more promising.

• Cloud Management (see Section 3.3.3)
Cloud management and HPC services are historically placed under the responsibility of
different IT managers and system administrators. This is why most Cloud management
tools are independent from HPC middleware and portals. Merging both worlds was not
our priority, but we are already working on their emerging convergence, using XCS3 GUI
versatility to connect Cloud manager APIs.

7 ARCHITECTURE AND IMPLEMENTATION

This section describes XCS3 architecture, implementation choices, and RESTful API. Then it ex-
plains how XCS3 integrates with HPC environments and applications, and it ends with information
about XCS3 setup.

7.1 XCS3 Architecture

Figure 3 shows the global architecture of XCS3. The web software consists of two main compo-
nents. The first one, the Java Core RESTful API web application, controls all core HPC objects
(e.g., clusters, users, jobs, applications, etc.). The second one, the GUI web application, controls all
web interface aspects (e.g., look&feel, dashboard components, user preferences, etc.). Both com-
ponents act as separate web servers, which can be accessed through HTTPS/HTTP. Both validate
users’ authorization through the OAuth service that runs within the XCS3 Java Core (as shown in
Figure 5).

In the HPC Platform middleware layer, one or more HPC middlewares (e.g., job scheduler, paral-
lel file system, etc.) rely on Pluggable Authentication Modules (PAM) and/or Name Service Switch
(NSS) mechanisms to validate users’ authentication and/or authorization.

The HPC cluster middleware and HPC applications layers are independent pieces of software.
XCS3 architecture preserves this independence with non-intrusive and independent modules: the
HPC cluster integration module and the HPC application abstraction framework module.

This architecture allows independent changes, replacements, and updates in XCS3 code at any
level: the RESTful API Java core, the presentation layer (i.e., GUI) libraries, the HPC cluster in-
tegration module, the HPC application integration code, and so on. Moreover, this architecture
respects the separate security layers scheme as seen in Figure 2.

The GUI web application consists of the following:

• application sErver For angular user InteRface (kEFIR): a web application built with HTML5,
AngularJS, and RWD approach. It includes layout templates, look&feel themes, and dash-
board components.

• Web Application Server And Broker Interface (wasabi): a web application responsible for
the following:

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:22 P. Calegari et al.

Fig. 3. XCS3 high-level architecture.

—serving kEFIR web application,
—proxying RESTful requests between kEFIR and the XCS3 API application,
—providing additional custom endpoints used internally by kEFIR application.

7.2 XCS3 Web Layer Implementation

As shown in Figure 4, the XCS3 web user interface is built on HTML5 [38] and AngularJS [6]
(v1.6) and its supported libraries and technologies such as Bootstrap [22] (one of the most popular
HTML, CSS, and JS framework for developing RWD projects), sass [60] (CSS extension language),
and NVD3 [50] (for charts and graphs). Web frameworks are evolving very quickly, and we are
already starting to port our code from AngularJS (written in JavaScript) to Angular [73] (written
in TypeScript). This decision is driven by the fact that AngularJS entered a three-year-long Term
Support (LTS) period in July 2018 before its end of support, while Angular (v.6) is stable and has
become widely used.

As shown in Figure 5, the Java Core RESTful API application uses well-proven libraries such
as Hibernate [34] (to handle/serialize Java objects), Jackson [39] (multi-purpose Java library for
processing JSON formatted data), Orika [55] (light Java bean object mapper), SSHJ [66] (for SSH2
connections), and Spring Boot [65] (set of components based on Spring).

Spring [64] allows the simple creation of standalone Java applications: It was built as a
dependency-injection container (one of the principles of software craftsmanship widely used in
Java ecosystem), and it evolved to become a whole framework that handles the infrastructure and
that should be considered more as a platform of components than just as a container.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:23

Fig. 4. XCS3 User interface architecture. Fig. 5. XCS3 Java core RESTful API architecture.

And just to give a complete view of the development environment we can add that software
built is managed under Maven [20] with the Jenkins [41] automation server. All project and code
management is done with Atlassian’s enterprise collaboration applications: documentation (speci-
fications, technical discussions, and reviews) with Confluence [24], project and issue tracking with
JIRA [42], and GIT code management with Bitbucket [21].

The security of a software is tightly linked to its quality. It is thus crucial to ensure that an HPC
portal be as robust and bug-free as possible. The Quality Assurance (QA) of XCS3 is controlled by
regular manual testing (essential for usability feedback) and by intensive automated tests based on
standard software: Serenity [63] for graphical interface tests and REST Assured [59] for the REST-
ful API functional and conformity tests. Security tests (e.g., intrusion, code injection tentative) are
regularly done.

7.3 XCS3 RESTful API Overview

As written in Section 3.2, several RESTful APIs dedicated to HPC resource usage already exist,
but no standard has emerged so far, and none of them were flexible enough for our needs. That is
why we decided to create our own. The exhaustive list of XCS3 RESTful API endpoints and HTTP
methods is available at Reference [31].

The usual primary HTTP methods (also called “verbs”) are used to manage objects (also called
“entities”) exposed by endpoints: POST is used to create new objects, GET is used to retrieve infor-
mation, HEAD is used to obtain meta-information about an object (e.g., check its existence), PUT is
used to update existing objects, and DELETE is used to delete objects.

Here are some examples of XCS3 RESTful API usage:

• the RESTful endpoint “/” together with the GET method is used to retrieve information
about endpoints availability,

• the RESTful endpoint “/jobs” together with the POST method is used to submit a job (an
example of a complete request command can be found in Section 7.5),

• the RESTful endpoint “/jobs/{jobId}” together with the GET method is used to get the
status of job jobId,

7.4 XCS3 HPC Environment Integration

To make XCS3 easy to integrate in any kind of environment (industry customer, public compute
center, Cloud HPC service provider, etc.), three main design choices were made and implemented:

• System abstraction layers at several level (as explained in Section 6.3): for standard HPC
directory services, for all major HPC batch schedulers, and for all major impersonation
mechanisms.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:24 P. Calegari et al.

Fig. 6. XCS3 job submission workflow.

• Non-intrusive HPC application integration through two possible approaches:
—Integration of HPC applications via our default XCS3 job submission templates (described

in Section 7.5).
—Integration of HPC applications using customer’s existing scripts for experienced orga-

nizations that want to use their own self-maintained job submission methods.
• Non-adherent to any HPC hardware or environment

The HPC cluster integration layer is mainly written with Bash (and some Python) scripts. First,
Bash scripts are best suited for working with HPC schedulers; second, they are easy to maintain
and adapt for customer specific needs; and, third, they are very common in HPC environments,
which makes the integration within customer cluster smoother.

7.5 XCS3 HPC Application Integration

The Application Administrator can create application web forms with the “Application Template
Editor.” This tool allows the user to place some objects (e.g., fields, menus, check-boxes, radio
buttons, file selectors) on a page and to associate them with labels and variables. The template
needs then to be associated with a script that includes the HPC application command line and
exports its required environment variables.

Once created, an application submission form can be assigned to one (or several) project(s).
Users assigned to this project are then allowed to submit jobs through the application form.
Figure 6 shows the full lifecycle of an application template for a sample Demo application, from
its creation by the administrator to its usage by an end-user in a job submission workflow. We
suppose that XCS3 Application Administrator has created the Demo web form and written the
associated Demo.xcs script in advance. The job submission workflow showed in Figure 6 starts
when the user opens the Demo submission form:

(1) When the user opens the Job Submission dashboard, XCS3 renders the Demo web form
with the information previously edited by the administrator in the Application Template
Editor.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:25

(2) User fills the fields of the Demo form with value1 and value2 and clicks on “Submit.”
(3) xcs-submit is executed by XCS3 portal user under the end-user identity through an im-

personation (“execute as”) security mechanism: xcs-submit creates a job script with all
the information it gathers (scheduler and HPC cluster characteristics from XCS3 settings,
application instructions from Demo.xcs, argument values from the web form: value1 and
value2) and it submits the job script to the scheduler. xcs-submit software acts like
a meta-scheduler: It takes “standardized” arguments (input, output, stage in/out mode,
queue, job name, number of nodes/processes/cores-per-processes, job dependence, job ar-
rays, priority, walltime, etc.) and translates them to submit jobs on any scheduler.

(4) The job gets an ID (e.g., 123), it is queued until enough resources are available on the HPC
cluster, and then it is executed.

(5) Job status is monitored by the HPC cluster integration mechanisms. The Java Core web
application updates its data base with this information, and the job status is then made
available to the web GUI through the data source mechanism. The user can then monitor
his/her jobs and get his/her results on XCS3 dashboards.

If a user wants to submit a job without using the web GUI, then the same workflow can be executed
by sending requests directly to the HTTP RESTful API web application. Here is a simple example
of how to submit a job through the XCS3 HTTP RESTful API with the curl command that can be
used from a terminal prompt to send HTTP requests1:

The job status list can be obtained (in JSON format) by typing:

7.6 XCS3 Setup

This section explains how the XCS3 software is packaged and how its logical architecture maps to
physical servers.

XCS3 setup consists in installing two web servers and their associated data bases on a single (or
on several) Linux server(s) with JRE 8 (Java Runtime Environment) installed. By default, RPM files
are provided for servers with RedHat Linux but packages can be built for any other standard Linux
distribution. Once the packages are installed, the configuration step is done by editing default
parameters and initial settings in two or three configuration files. It is completed by filling web
forms in the XCS3 GUI itself to declare the two main integration bindings:

(1) a directory service: IP address, credentials, Base DN (Distinguished Name), attributes, and
so on.

(2) a scheduler client node that will allow communicating with the HPC cluster: IP address,
credentials, and so on. The package “XCS3 Integration with HPC Platforms” needs to be
installed on this node (e.g., with its RPM file).

1The 2YotnFZFEjr1zCsicMWpAA string is the OAuth 2.0 token obtained from an initial request sent to the API with the

user login/password information.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:26 P. Calegari et al.

The handling of additional clusters just requires declaring an additional scheduler client node for
each of them in the XCS3 GUI.

8 XCS3 NON-FUNCTIONAL FEATURES

This section discusses how XCS3 addresses the non-functional requirements introduced in
Section 4: security, usability, performance, and reliability.

8.1 XCS3 Security

Most of the topics listed below relate to the Java Core RESTful API web application, because the
GUI web application cannot execute any action nor access any data without calling the HTTP
RESTful API service. So most of the security effort is done in the core application. The following
security features (introduced in Section 4.1) are implemented in XCS3:

• Authentication (see Section 4.1.2)
XCS3 supports two authentication methods that are configurable:
—delegation to directory services like NIS and LDAP in the case they are configured to

authenticate users: In this case, identification data and user attributes are collected from
the directory service tables, and the directory service is used to check user passwords,

—delegation to an authentication system that can be local or external (e.g., a Kerberos ser-
vice as described in Section 4.1.2): In this case, only identification data and user attributes
are managed at directory service level. Authentication is actually delegated to the au-
thentication system that generates a ticket. This ticket is then handled by XCS3, since it
must be used and checked by all the services along the execution chain.

Other modes, which were supported in early XCS releases, are now deprecated, because
they were too basic in terms of security level and ability to be maintained in production
(e.g., local host users and dedicated user database).

Kerberos was supported by XCS2 but the implementation was too restrictive and did not
take advantage of standard security layers used by modern operating systems. Kerberos
support was not implemented in the first releases of XCS3 (due to lack of resources) but
it was added in the last release by relying on GSS-API [96]. For future releases, we are
investigating other implementation choices that should rely more on operating-system-
level mechanisms such as SSSD [67]. For instance, this will ease integration with Microsoft
Active Directory technology.

• Authorization (see Section 4.1.3)
Authorization is managed by the open industry-standard protocol OAuth 2.0 [51] (published
as RFC6749 [88] and RFC6750 [92]). OAuth tokens are generated once users are authenti-
cated. Users (or even programs and services) are then authorized to access XCS3 OAuth
protected API and GUI by using his/her token.

The access to functionalities and resources at a very fine-grained level is controlled
by roles (as defined in Section 4.1.3). Seven roles are pre-defined: overall administrator,
customer administrator, project administrator, application administrator, license manager,
standard user, and restricted user. New roles can be created with the Role Editor tool directly
available from the administrator dashboard: The scope of about 60 privileges (i.e., actions on
an object) can be defined to create new roles. Objects includes applications, user data space,
compute power, remote visualization, information about licenses, job status, accounting,
and so on. Examples of privileges are the following: CAN_SUBMIT_JOB, CAN_LIST_JOBS,
and CAN_UPLOAD_FILES. The possible scopes are (by hierarchical importance):
—Global: the whole portal instance (i.e., all users and resources behind the portal).

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:27

—Customer: the scope of the Directory Service defined for the selected customer (i.e., all
users and resources in the same tenant).

—Project: the scope of the project(s)/Linux group(s) the user belongs to (i.e., all users and
resources in the same Linux group(s) as the user).

—User: only the user scope (i.e., user own resources).
—No scope (i.e., the privilege is not granted).
Each privilege consists of an action and only one scope. Scopes are not disjunctive, so scopes
with higher priority extend the range of lower scopes.

• Accounting (see Section 4.1.4)
XCS3 gathers a lot of data during job executions. These data can be used for informational,
statistical, and/or accounting purposes. Some information is regularly updated and available
during job lifecycle (e.g., elapsed time or job status), while some other information is only
available after a job is finished (e.g., consumed resources or execution time). The XCS3
accounting mechanism is similar to that of batch schedulers: The accounting data of a job
are generated/updated only once (just after the job end). All the information is stored in an
XCS3 internal database from which it can be retrieved by API calls. Accounting data can
be viewed, sorted, and filtered in XCS3 web GUI. It can also be exported (in CSV format
files) for ease of post-processing like usage statistics, inputs for fair-share configurations,
or billing.

In addition to this automatic accounting history recording, XCS3 can manage account-
ing credits at project level (scope). Credits can be added/removed by administrators, and
they are dynamically decremented according to a customizable credit formula when jobs
are executed. Credit formulas are defined by the administrators at customer and/or project
scope. They use standard arithmetic operators and take any XCS3 accounting variables (e.g.,
number of cores/nodes/GPUs, elapsed time, etc.) as their operands. Once all the credits of a
project are spent, users of this project cannot submit jobs anymore, but their active jobs can
continue to run until their end. The number of used credits then becomes negative during
this phase. The administrator can set a minimum overused credit limit, and when this limit
is reached, all the jobs of the project can then be killed.

8.2 XCS3 Usability

The GUI is the most visible part of the portal. It is built on top of the XCS3 HTTP RESTful API
core web services, and it is responsible to handle most of the usability requirements. Here are the
main XCS3 web GUI features that were implemented to fulfill usability requirements discussed in
Sections 4.2:

• Operability: double authorization checking (see Section 4.2)
To fulfill security requirements, such as authorization (introduced in Section 4.1.3), without
impacting XCS operability, authorization granting is checked both at the GUI and at the
API levels. For example, the views are controlled and filtered based on user roles at the GUI
level. Therefore, requests that would anyway be rejected by the RESTful API because of
a lack of privilege are never sent by the GUI to the XCS3 API core web application. User
authorizations for using any view or dashboard component in the XCS3 GUI are OAuth-
controlled 2.0 [51] (as is done for using the XCS3 API core web services).

• Learnability: tooltips (see Section 4.2)
When a user selects a web form field, a description of the field and an example of its usage
are popped up. This tooltip feature helps the users to quickly learn how to use the GUI for

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:28 P. Calegari et al.

managing their jobs and files. This feature also helps the administrators to configure the
XCS3 web applications.

• Aesthetics: customizable GUI themes (see 4.2)
The colors (i.e., CSS) and images/logos used in the GUI are packaged in theme files that users
and administrators can import/export dynamically. Users can select their favorite theme
from the list of themes made available by the administrator. Users can also create and share
their own custom theme by using an integrated theme editor. Note that only the portal
administartor can change the theme of the login page.

• HPC Application templates (see Section 4.2.1)
The XCS3 application template behaves as an abstraction layer that hides operating system,
scheduler and shell environment complexity. It presents a unified way to submit HPC/batch
computation and remote viewing/interactive jobs (see Section 7.5 for details about HPC ap-
plication integration). HPC application web form can be created with an interactive “Appli-
cation Editor”: alpha-numerical fields (with type checking: integer, float, text, etc.), check-
boxes, file/directory selectors, radio buttons, and pull-down menus can be added with a few
clicks. Fields can be conditional, that is, they can be made visible only under some condi-
tions based on the values entered in other fields of the same form. Field values can then be
associated to variables used in the job submission script (see Section 7.5 for details about
this mechanism).

In addition to the standard HPC application templates, software license templates are also
supported. A software license management abstraction layer operates through the imper-
sonation layer to allow the administrators to control several flavors of license files, license
keys, and license servers: FlexLM, RLM, key-based public licensing services, and so on.

• Fully customizable GUI (see Section 4.2.2)
Users can define their workspace look&feel in their XCS3 GUI. They can manage the fol-
lowing elements:
—GUI languages: The GUI is internationalized and can potentially support any language

(as long as the translation files are written). At the moment, four languages are already
available: English, French, Polish, and German. Users can select and save their default
language in their profile.

—Dashboards: The concept is to have a dashboard, that is, a single-page application (SPA),
to minimize the number of “clicks” needed to perform all actions of any user workflow.
Users can create several dashboards for different usages, switch from one to another in
one click, and save them for future use. Users can create/edit/delete their dashboards by
placing, configuring, and resizing Dashboard Components (DC). They can share their
dashboards with other users by importing/exporting them (in JSON format files). An ex-
ample of a typical end-user XCS3 GUI dashboard is shown in Figure 7.

—Dashboard Components (DC): Dashboards are built from a collection of building
blocks that we call Dashboard Components (DC). Each DC might be considered as a small
“App.” Typical end-user DCs are as follows: Job Submission, File Management, License
Management, Data Table, Data Graph, Scratchpad, Data Plotter, Image viewer, and Text
Editor. Administrators granted with the appropriate role and privileges can use DCs ded-
icated to the administration of Applications, Users, Customers, Projects, Clusters, Direc-
tory Services, Credits, Credit Formulas, Roles, and Licenses.

—Data tables/Data graphs: tables and graphs can be defined in DCs to list or show graph-
ical statistics about HPC objects (e.g., clusters, users, jobs, applications, etc.). Users can
define the type of object attributes (e.g., job status) they want to show as well as how they

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:29

Fig. 7. Typical XCS3 user dashboard with eight dashboard components: Job Submission, Data Table (with
job status), Data Chart (with job status), Data Chart (with application statistics), Data Plotter, Text Editor,
File Manager, and Data Chart (with disk usage).

want to sort and filter them. They are periodically updated at a configurable frequency
with values read from data sources. All these preferences are saved in the user profile.

• RWD (see Section 4.2.3)
All XCS3 web elements are RWD enabled on the login page and the dashboards: dashboard
components, notification windows, buttons, fonts, graphs, and so on. Their position is op-
timized and/or their size is adapted based on client display characteristics.

8.3 XCS3 Performance

XCS2 was a single monolithic web application responsible for both back-end and front-end in-
teractions (i.e., to communicate with HPC clusters and to serve web pages to users). With this
architecture, the portal response time was highly impacted by scheduler performance and HPC
cluster size. Moreover, it made performance analysis difficult to perform.

XCS3 is split into two independent web applications: the “Java Core RESTful API” to deal only
with the HPC clusters and the “GUI” to handle user interactions (as described in Section 7.1).
Moreover, these two servers are communicating through RESTful HTTP requests (see Section 7.3),
whose asynchronous and stateless nature mitigates bottlenecks and/or deadlock situations: If for
any reason, one application is slowed down or stalled, then the other one is not impacted. It con-
tinues to run without using the latest information of the failing server. Everything gets back to
normal as soon as the failing service is up and running again.

Such separation minimizes the performance issues observed with XCS2. This architecture also
simplifies the way we can analyze and monitor performance measures of the whole solution.

8.3.1 Java Core RESTful API Performance. The raw performance of the Java Core RESTful API
web application can be measured by controlling the number of concurrent requests handled in a
specified amount of time. Such performance tests are run daily with JMeter [19] to qualify new

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:30 P. Calegari et al.

implemented functions. To reach our goal (hundreds of API requests per second), the following
choices have had the most impact:

• caching of cluster data in XCS3 database,
• selective mechanism for updating cache information in the database: The data update rate

in the cache depends on both the entry type and status. For instance, resource usage ac-
counting data and job states are not refreshed at the same rates, and entries that are more
likely to change fast are updated more often than others,

• auto-adaptive mechanism for updating cache information in the database: Each datum in
the cache is associated to a “validity period” (i.e., an estimate of the best moment to update
this data). The value of this validity period depends on some monitored factors like the HPC
scheduler response time: The quicker the response time, the smaller the invalidation time,

• specific optimizations aimed at reducing both response time and size of messages for the
most often called API endpoints (e.g., “/jobs/{jobId}/status”) were implemented.

8.3.2 GUI Performance. The GUI application was itself split into two parts: the login part de-
signed and optimized (as a static page) to reduce first access loading time and the Single Page
Application (SPA) part optimized for user workflows. An SPA is an application running on the
client side (web browser), that is, when web page content needs to be updated, web pages are
not reloaded, and only new content is downloaded asynchronously. The use of such a technology
makes it possible to update information faster in the GUI, since only the necessary data of the
page (i.e., a small part of it) is loaded when needed. The GUI response time is boosted by the state-
less nature of the MVW design pattern as well as the JavaScript client-side rendering and content
caching, implemented with AngularJS.

Note that this makes performance measurement of the GUI server complex, because simple
criteria, like the number of concurrent pages loaded in a given time, which is a good information
for API and static web pages, no longer make sense in this context. GUI response time might
depend on many factors, such as network performance and good/bad design of application but
also, as most of the computation for SPA is done on client side, by the device used to interact with
application.

The SPA response time was optimized by using a “request queue” mechanism: If several Dash-
board Components (DC) process data from a same API endpoint (e.g., the same data can be shown
in a tabular of a Data Table DC and in a pie chart of a Data Graph DC), then only one API request
is sent, and the response is propagated to all querying DC. This approach decreases overall GUI
response time and also prevents API overloading when using complex dashboards with multiple
components.

Other performance optimization choices that have been made are as follows:

• optimized server-side filtering of database entries (only the relevant data to be displayed in
tables is actually transferred),

• JavaScript source-code modularization,
• minification and compression of the JavaScript code that is loaded on-demand on the web

page (the reduced size of the loaded code decreases its load time and makes its parsing
faster),

• use of AngularJS specific optimization techniques (e.g., watchers usage minimization),
• use of performance-proven libraries (e.g., lodash [45]).

8.4 XCS3 Reliability

Here is how the three reliability concepts introduced in Section 4.4 apply to XCS3.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

Web Portals for High-performance Computing: A Survey 5:31

• Portal Data Backup (see Section 4.4.1)
XCS3 has no adherence with any backup technology: Any regular disk- or tape-based
backup systems and software can be used. XCS3 contents that require proper backup are
mostly:
—XCS3 databases
—XCS3 configuration files
—XCS3 log files
—Job submission scripts (only in case of customer-specific requests)
These XCS3 contents should be added to any existing standard backup policies such as
daily increments, weekly full backups, and a few weeks retention. Both XCS3 cold and hot
database backups are supported. For cold backups, cron tabs may be used to stop and restart
the XCS3 services out of working hours.

Another way to easily implement XCS3 backups is to use snapshots and/or clones of the
VM that runs XCS3 services when a virtualized approach is used (as presented in the next
paragraph).

• HA/Fault tolerance (see Section 4.4.2)
The XCS3 web portal is based on standard underlying technologies and services: mostly
Apache front-end HTTP server, Tomcat module for Java/dynamic content, AngularJS
framework, and MySQL database server. As such, XCS3 does not onboard its own fault-
tolerance mechanism and is in general integrated with third-party fault-tolerance systems,
which is a common and easy practice as far as web portal services are concerned. XCS3 has
no adherence to such systems.

The easiest way to implement HA is to virtualize XCS3 (and its underlying services) using
state-of-the-art hypervisors for their ability to rapidly and transparently switch an active
VM from a failing physical host to another one without service interruption. In the worst
case, some users may be logged out from their session but without any loss of their work,
since it is constantly serialized/committed to the database. When XCS3 is installed on cus-
tomer premises, it easily integrates with any virtualization technology that matches cus-
tomer IT standards. In the case of commercial software (like Citrix XenServer and VMware
vSphere) customers can then tap into an existing pool of licenses. Such solutions can also
be based on open source software like Proxmox VE, KVM, and VirtualBox.

Another approach is to use OS-level clustered HA mechanisms such as Red Hat Cluster,
Heartbeat, and Pacemaker. These methods implement active-passive models and require
extra custom scripting to match the customer’s environment. They are rarely used by our
customers, probably because they are not as flexible or efficient as VM live migration and
active-active HA model.

• Recoverability (see Section 4.4.3)
From an HPC middleware development standpoint, disaster recovery is not a concern, since
it is up to the customer’s IT managers to design the disaster recovery principles and scope
as well as data replication, in coherence with their own business constraints. From our
experience, the complete HPC infrastructure is rarely covered by the disaster recovery plan
(DRP).

However, a single XCS3 instance supports the use of multiple clusters, and it makes no
assumptions about where they are located. XCS3 can continue to handle jobs as long as not
all the HPC premises are affected by a disaster, provided that external network bandwidth
and latency are good enough. If a DRP exists and integrates HPC services, then XCS3 will be
perfectly fine without inducing any special configuration effort. In this, XCS3 contributes

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

5:32 P. Calegari et al.

to ease the integration of HPC workloads in a DRP. XCS3 data backup and HA are definitely
more sensitive.

9 CONCLUSION AND FUTURE WORK

HPC portals are way more than just a light web presentation layer to address a bunch of job sub-
mission scripts. They must involve elaborate system interfaces with the organization’s computing,
visualization, reliability, and security services. These imply a deep knowledge of HPC specific us-
ages, applications, and system architectures. Moreover, HPC portals must now be “HPC service
provider ready” to properly serve and isolate tenants from a single solution and configuration
point.

In this article, we listed functional and non-functional requirements that HPC portals should
address to answer the current and future challenges of HPC-as-a-Service usage. Of these require-
ments, we categorized features as “mandatory,” “key,” and “nice-to-have.” The design and devel-
opment of XCS3 was chosen as a common thread to show how the mandatory and key features can
be implemented in one software, and we discussed how the non-functional requirements could be
addressed.

The HPC portal domain evolves extremely quickly, so we will need to adapt our XCS3 software
regularly. In the near future, we plan to develop new micro services with associated dashboard
components. The goal is to support more monitoring features (system performance, power con-
sumption, temperature, HPC application profile, etc.). In the longer term, we plan to investigate
the opportunity of integrating a workflow engine, capacity planning functions, and Cloud man-
agement capabilities (orchestration, provisioning, cloud bursting, etc.).

On supercomputers as well as on the Cloud, Data Analytics (DA), Deep Learning (DL), Machine
Learning (ML), and HPC requirements tend to converge. We anticipate that current HPC portals
will soon evolve to address all of these domains, so adding DA, DL, and ML support to XCS3 is one
of our priorities.

ACKNOWLEDGMENTS

The authors thank Adam Wieczorek, Michał Bystry, Paweł Chrząszczewski, Zbigniew Rosiak,
Grzegorz Kosiacki, Piotr Bubel, Kamil Zaharan, Jakub Muras, and Krzysztof Chołody for their ac-
tive work on this project, as well as Sébastien Lacour, Olivier David, Dominique Le Corre, Emilien
Remy, Aline Ficet, Romuald Sifflet, Laurent Le Grandois, Solofo Ramangalahy, Hugues Bonhomme,
Olivier Jean, Marek Walczak, Michał Kaczanowski, and Eric Eppe for their constructive ideas and
their support, and those who kindly answered our questions about their HPC portals. The authors
also thank Pascale Bernier-Bruna and the anonymous reviewers for their valuable comments and
helpful suggestions to improve the quality of the article.

REFERENCES

[1] STORMS: Software Tool for the Optimization of Resources in mobile Systems–FP4-ACTS–AC016–European Com-

mission. Retrieved from http://cordis.europa.eu/project/rcn/30460_en.html.

[2] WebSubmit: A Web-based Interface to High-Performance Computing Resources. Retrieved from https://math.nist.

gov/mcsd/savg/websubmit.

[3] DIET: The Grid and Cloud middleware. Retrieved from https://graal.ens-lyon.fr/∼diet.

[4] Altair Engineering Introduces New Web Portal Technology for Computational Grids and Distributed Computing.

Retrieved from http://www.altair.com/NewsDetail.aspx?news_id=69.

[5] InfoWorld announces our 2008 Best of Open Source Awards. Retrieved from http://www.infoworld.com/article/

2637858/open-source-software/infoworld-announces-our-2008-best-of-open-source-awards.html.

[6] AngularJS. Retrieved from https://angularjs.org.

[7] ENES Portal and IS-ENES2 project - vERC. Retrieved from https://verc.enes.org/.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

http://cordis.europa.eu/project/rcn/30460_en.html
https://math.nist.gov/mcsd/savg/websubmit
https://math.nist.gov/mcsd/savg/websubmit
https://graal.ens-lyon.fr/~diet
http://www.altair.com/NewsDetail.aspx?news_id=69
http://www.infoworld.com/article/2637858/open-source-software/infoworld-announces-our-2008-best-of-open-source-awards.html
http://www.infoworld.com/article/2637858/open-source-software/infoworld-announces-our-2008-best-of-open-source-awards.html
https://angularjs.org
https://verc.enes.org/

Web Portals for High-performance Computing: A Survey 5:33

[8] Platform Application Center introduced by Platform Computing. Retrieved from https://www.thefreelibrary.com/

Platform+Application+Center+introduced+by+Platform+Computing.-a0212119400.

[9] Fujitsu SynfiniWay V4 enables industrial-strength Enterprise Clouds. Retrieved from https://www.fujitsu.com/uk/

news/pr/fs-20100907.html.

[10] Oxalya - HPC by OVH.COM. Retrieved from http://www.oxalya.com.

[11] SysFera-DS Version 5.0 Introduced. Retrieved from https://www.hpcwire.com/off-the-wire/sysfera-ds-version-

5-0-introduced/.

[12] W3C High Performance Computing Community Group. Retrieved from https://www.w3.org/community/hpcweb.

[13] Fujitsu Launches HPC Gateway Web Software. Retrieved from https://insidehpc.com/2015/07/fujitsu-launches-

hpc-gateway-web-software.

[14] ActiveEon ProActive Parallel Suite. Retrieved from http://proactive.activeeon.com.

[15] Adaptive Computing Viewpoint. Retrieved from http://www.adaptivecomputing.com/products/hpc-products/

viewpoint.

[16] Agave Platform Tooling Overview—Agave ToGo. Retrieved from https://agaveapi.co/tooling.

[17] Amazon Web Services AWS High Performance. Retrieved from https://aws.amazon.com/hpc.

[18] Apache Airavata. Retrieved from http://airavata.apache.org.

[19] Apache JMeter Official Site. Retrieved from http://jmeter.apache.org.

[20] Apache Maven Official Site. Retrieved from https://maven.apache.org.

[21] Bitbucket. Retrieved from https://www.atlassian.com/software/bitbucket.

[22] Bootstrap—The most popular HTML, CSS, and JS library in the world. Retrieved from http://getbootstrap.com/.

[23] Compute Manager: Job Submission and Management Portal—PBS Works. Retrieved from http://www.pbsworks.

com/PBSProduct.aspx?n=Compute-Manager&c=Overview-and-Capabilities.

[24] Confluence—Team collaboration software. Retrieved from https://www.atlassian.com/software/confluence.

[25] CycleCloud—Cycle Computing. Retrieved from https://cyclecomputing.com/products-solutions/cyclecloud/.

[26] 2017. CyVerse—Science APIs. Retrieved from http://www.cyverse.org/science-apis.

[27] Ember.js. Retrieved from https://emberjs.com.

[28] EnginFrame Cloud Portal—NICE. Retrieved from https://www.nice-software.com/products/enginframe.

[29] Ext JS JavaScript framework for web apps—Sencha. Retrieved from https://www.sencha.com/products/extjs.

[30] Extreme factory. Retrieved from https://atos.net/en/products/high-performance-computing-hpc/bull-extreme-

factory.

[31] Extreme factory Computing Studio REST API documentation. Retrieved from https://public.extremefactory.com/

docs/xcs/rest-api.

[32] Fortissimo Marketplace—HPC Solutions and services. Retrieved from https://www.fortissimo-project.eu/.

[33] GitHub—OSC/Open-OnDemand: Open-source project based on the Ohio Supercomputer Center’s OnDemand plat-

form. Retrieved from https://github.com/OSC/Open-OnDemand.

[34] Hibernate. Everything data. Retrieved from http://hibernate.org.

[35] High Performance Computing (HPC) Solutions Google Cloud. Retrieved from https://cloud.google.com/solutions/

hpc.

[36] HPC Services—Sabalcore. Retrieved from http://www.sabalcore.com/services.

[37] HPC Workload-optimized Solutions: FTS—Fujitsu Global, HPC Gateway Application Desktop. Retrieved from

http://www.fujitsu.com/global/microsites/hpc/products-services/index.html.

[38] HTML5 W3C. Retrieved from https://www.w3.org/TR/html5.

[39] JacksonHome FasterXML Wiki. Retrieved from http://wiki.fasterxml.com/JacksonHome.

[40] JARVICE is the Cloud Platform for Big Compute—Nimbix. Retrieved from https://www.nimbix.net/jarvice.

[41] Jenkins. Retrieved from https://jenkins.io.

[42] JIRA—Issue & project tracking software. Retrieved from https://www.atlassian.com/software/jira.

[43] Kerberos: The Network Authentication Protocol. Retrieved from http://web.mit.edu/kerberos/www/.

[44] Liferay. Retrieved from https://www.liferay.com.

[45] Lodash. Retrieved from https://lodash.com.

[46] Microsoft Azure Big Compute : HPC & Batch. Retrieved from https://azure.microsoft.com/fr-fr/solutions/big-

compute.

[47] Microsoft HPC Pack R2 Web Components 4.5. Retrieved from http://microsoft-hpc-pack-r2-web-components.

software.informer.com/4.5.

[48] Neuroscience Gateway Portal. Retrieved from http://www.nsgportal.org/.

[49] NEWT NERSC Web Toolkit. Retrieved from https://newt.nersc.gov.

[50] NVD3 Re-usable charts for d3.js. Retrieved from http://nvd3.org.

[51] OAuth 2.0 - Community Site. Retrieved from https://oauth.net/2.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

https://www.thefreelibrary.com/Platform+Application+Center+introduced+by+Platform+Computing.-a0212119400
https://www.thefreelibrary.com/Platform+Application+Center+introduced+by+Platform+Computing.-a0212119400
https://www.fujitsu.com/uk/news/pr/fs-20100907.html
https://www.fujitsu.com/uk/news/pr/fs-20100907.html
http://www.oxalya.com
https://www.hpcwire.com/off-the-wire/sysfera-ds-version-5-0-introduced/
https://www.hpcwire.com/off-the-wire/sysfera-ds-version-5-0-introduced/
https://www.w3.org/community/hpcweb
https://insidehpc.com/2015/07/fujitsu-launches-hpc-gateway-web-software
https://insidehpc.com/2015/07/fujitsu-launches-hpc-gateway-web-software
http://proactive.activeeon.com
http://www.adaptivecomputing.com/products/hpc-products/viewpoint
http://www.adaptivecomputing.com/products/hpc-products/viewpoint
https://agaveapi.co/tooling
https://aws.amazon.com/hpc
http://airavata.apache.org
http://jmeter.apache.org
https://maven.apache.org
PLX-HTTPS://www.atlassian.com/software/bitbucket
http://getbootstrap.com/
http://www.pbsworks.com/PBSProduct.aspx?n=Compute-Manager&c=Overview-and-Capabilities
http://www.pbsworks.com/PBSProduct.aspx?n=Compute-Manager&c=Overview-and-Capabilities
https://www.atlassian.com/software/confluence
https://cyclecomputing.com/products-solutions/cyclecloud/
http://www.cyverse.org/science-apis
https://emberjs.com
https://www.nice-software.com/products/enginframe
https://www.sencha.com/products/extjs
https://atos.net/en/products/high-performance-computing-hpc/bull-extreme-factory
https://atos.net/en/products/high-performance-computing-hpc/bull-extreme-factory
https://public.extremefactory.com/docs/xcs/rest-api
https://public.extremefactory.com/docs/xcs/rest-api
https://www.fortissimo-project.eu/
https://github.com/OSC/Open-OnDemand
http://hibernate.org
https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc
http://www.sabalcore.com/services
http://www.fujitsu.com/global/microsites/hpc/products-services/index.html
https://www.w3.org/TR/html5
http://wiki.fasterxml.com/JacksonHome
https://www.nimbix.net/jarvice
https://jenkins.io
https://www.atlassian.com/software/jira
http://web.mit.edu/kerberos/www/
https://www.liferay.com
https://lodash.com
https://azure.microsoft.com/fr-fr/solutions/big-compute
https://azure.microsoft.com/fr-fr/solutions/big-compute
http://microsoft-hpc-pack-r2-web-components.software.informer.com/4.5
http://microsoft-hpc-pack-r2-web-components.software.informer.com/4.5
http://www.nsgportal.org/
https://newt.nersc.gov
http://nvd3.org
https://oauth.net/2

5:34 P. Calegari et al.

[52] OnDemand - Ohio Supercomputer Center. Retrieved from https://www.osc.edu/resources/online_portals/

ondemand.

[53] Open Source Collaboration Software Platform—eXo. Retrieved from https://www.exoplatform.com.

[54] Orchestrate—RStor. Retrieved from https://rstor.io/products/orchestrate.

[55] Orika reference guide. Retrieved from https://orika-mapper.github.io/orika-docs.

[56] PBS Access & PBS Control, Altair Technology Conference (ATC’2017). Retrieved from http://blog.altair.co.kr/

wp-content/uploads/2017/09/Altair_ATC_jhpark_20170915.pdf.

[57] React— JavaScript library for building user interfaces. Retrieved from https://facebook.github.io/react.

[58] Research data management simplified—globus. Retrieved from https://www.globus.org.

[59] REST Assured. Retrieved from http://rest-assured.io.

[60] Sass: Syntactically Awesome Style Sheets. Retrieved from http://sass-lang.com.

[61] ScaleX, Rescale–Platform. Retrieved from http://www.rescale.com/products.

[62] Scyld HPC Cloud Appliance, Penguin Computing. Retrieved from http://www.penguincomputing.com/solutions/

scyld-hpc-cloud-appliance.

[63] Serenity BDD—Automated Acceptance Testing with Style. Retrieved from http://www.thucydides.info.

[64] Spring. Retrieved from https://spring.io.

[65] Spring Boot—Projects. Retrieved from https://projects.spring.io/spring-boot.

[66] SSHJ - SSHv2 library for Java. Retrieved from https://github.com/hierynomus/sshj.

[67] SSSD. Retrieved from https://github.com/SSSD/sssd.

[68] TOP500 Supercomputer Sites. Retrieved from https://www.top500.org.

[69] TurboVNC. Retrieved from http://www.turbovnc.org.

[70] UberCloud Marketplace. Retrieved from https://community.theubercloud.com/store/.

[71] UNICORE - Distributed computing and data resources. Retrieved from https://www.unicore.eu.

[72] Xpra home page. Retrieved from https://xpra.org.

[73] Angular. Retrieved from https://angular.io.

[74] Asif Akram, Dharmesh Chohan, David Meredith, and Rob Allan. 2007. CCLRC portal infrastructure to support

research facilities: Research articles. Concurr. Comput.: Pract. Exper. 19, 6 (Apr. 2007), 751–766. DOI:https://doi.org/

10.1002/cpe.v19:6

[75] Asif Akram, Dharmesh Chohan, Xiao Dong Wang, Xiaobo Yang, and Rob Allan. 2005. A service oriented architecture

for portals using portlets. In Proceedings of the UK e-Science All Hands Meeting, Simon J. Cox and David W. Walker

(Eds.). 192–199.

[76] R. Allan, R. Keegan, D. Meredith, M. Winn, and G. Winter. 2004. e-HTPX - HPC, Grid and Web-Portal Technologies

in High Throughput Protein Crystallography. In Proceedings of the UK e-science All Hands Meeting, Simon J. Cox

(Ed.). 187–193.

[77] Christopher Allen and Tim Dierks. 1999. The TLS Protocol V.Version 1.0. RFC 2246. DOI:https://doi.org/10.17487/

RFC2246

[78] Hrachya Astsatryan, Vladimir Sahakyan, Yuri Shoukouryan, Michel Daydé, Aurélie Hurault, Marc Pantel, and Eddy

Caron. 2008. A grid-aware web interface with advanced service trading for linear algebra calculations. In Proceed-

ings of the 8th International Meeting High Performance Computing for Computational Science (VECPAR’08). 106–

113.

[79] C. A. Atwood, R. C. Goebbert, J. A. Calahan, T. V. Hromadka III, T. M. Proue, W. Monceaux, and J. Hirata. 2016.

Secure web-based access for productive supercomputing. Comput. Sci. Eng. 18, 1 (Jan. 2016), 63–72. DOI:https://doi.

org/10.1109/MCSE.2015.134

[80] Patrice Calegari, Frédéric Guidec, Pierre Kuonen, Blaise Chamaret, Stéphane Ubéda, Sophie Josselin, Daniel Wagner,

and Mario Pizarosso. 1996. Radio network planning with combinatorial optimization algorithms. In Proceedings of

the 1st ACTS Mobile Telecommunications Summit 96, Chr. Christensen (Ed.), Vol. 2. 707–713.

[81] Ted Carnevale, Amit Majumdar, Subha Sivagnanam, Kenneth Yoshimoto, Vadim Astakhov, Anita Bandrowski, and

Maryann Martone. 2014. The neuroscience gateway portal: High performance computing made easy. BMC Neurosci.

15, 1 (2014), P101. DOI:https://doi.org/10.1186/1471-2202-15-S1-P101

[82] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. 2004. Asynchronous and deterministic objects. In Pro-

ceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’04). ACM,

New York, NY, 123–134. DOI:https://doi.org/10.1145/964001.964012

[83] Eddy Caron, Frédéric Desprez, and David Loureiro. 2008. All-in-one graphical tool for the management of DIET a

GridRPC middleware. In Grid and Services Evolution, Norbert Meyer, Domenico Talia, and Ramin Yahyapour (Eds.).

CoreGRID Workshop on Grid Middleware (in conjunction with OGF’23), Springer, Berlin, 169–187.

[84] B. Cramariuc and O. Cramariuc. 2010. A brief review of HPC provided as a WEB service by SMEs - Present situation

and future trends. J. Appl. Comput. Sci. Math. 4 (Mar. 30 2010), 20–24.

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

https://www.osc.edu/resources/online_portals/ondemand
https://www.osc.edu/resources/online_portals/ondemand
https://www.exoplatform.com
https://rstor.io/products/orchestrate
https://orika-mapper.github.io/orika-docs
http://blog.altair.co.kr/wp-content/uploads/2017/09/Altair_ATC_jhpark_20170915.pdf
http://blog.altair.co.kr/wp-content/uploads/2017/09/Altair_ATC_jhpark_20170915.pdf
https://facebook.github.io/react
https://www.globus.org
http://rest-assured.io
http://sass-lang.com
http://www.rescale.com/products
http://www.penguincomputing.com/solutions/scyld-hpc-cloud-appliance
http://www.penguincomputing.com/solutions/scyld-hpc-cloud-appliance
http://www.thucydides.info
https://spring.io
https://projects.spring.io/spring-boot
https://github.com/hierynomus/sshj
https://github.com/SSSD/sssd
https://www.top500.org
http://www.turbovnc.org
https://community.theubercloud.com/store/
https://www.unicore.eu
https://xpra.org
https://angular.io
https://doi.org/10.1002/cpe.v19:6
https://doi.org/10.1002/cpe.v19:6
https://doi.org/10.17487/RFC2246
https://doi.org/10.17487/RFC2246
https://doi.org/10.1109/MCSE.2015.134
https://doi.org/10.1109/MCSE.2015.134
https://doi.org/10.1186/1471-2202-15-S1-P101
https://doi.org/10.1145/964001.964012

Web Portals for High-performance Computing: A Survey 5:35

[85] Dietmar W. Erwin and David F. Snelling. 2001. UNICORE (Uniform Interface to Computing REsources): A grid

computing environment. In Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing

(Euro-Par’01). Springer-Verlag, London, Berlin, 825–834.

[86] Geoffrey Fox and David Walker. 2003. e-Science gap analysis. National e-Science Centre, UK e-Science Technical Report

UKeS-2003-01 (2003).

[87] Antonella Galizia, Luca Roverelli, Gabriele Zereik, Emanuele Danovaro, Andrea Clematis, and Daniele D’Agostino.

2017. Using Apache Airavata and EasyGateway for the creation of complex science gateway front-end. Fut. Gener.

Comput. Syst. (2017). DOI:https://doi.org/10.1016/j.future.2017.11.033

[88] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. DOI:https://doi.org/10.17487/rfc6749

[89] R. Henry, P. Lagier, and D. Plaindoux. 2004. FSE grid middleware: Collaborative grid environment for distributed

computing. Fujitsu Sci. Techn. J., 40, 2 (2004), 269–281.

[90] Luke Howard. 1998. An Approach for Using LDAP as a Network Information Service. RFC 2307. DOI:https://doi.

org/10.17487/RFC2307

[91] David E. Hudak, Douglas Johnson, Jeremy Nicklas, Eric Franz, Brian McMichael, and Basil Gohar. 2016. Open

OnDemand: Transforming computational science through omnidisciplinary software cyberinfrastructure. In Pro-

ceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale (XSEDE’16). ACM, New York, NY.

DOI:https://doi.org/10.1145/2949550.2949644

[92] Michael Jones and Dick Hardt. 2012. The OAuth 2.0 Authorization Framework: Bearer Token Usage. RFC 6750.

DOI:https://doi.org/10.17487/rfc6750

[93] Katherine A. Lawrence, Michael Zentner, Nancy Wilkins-Diehr, Julie A. Wernert, Marlon Pierce, Suresh Marru, and

Scott Michael. 2015. Science gateways today and tomorrow: Positive perspectives of nearly 5000 members of the

research community. Concurr. Comput.: Pract. Exp. 27, 16 (05 2015), 4252–4268. DOI:https://doi.org/10.1002/cpe.3526

[94] Marc Levrier, Patrice Calegari, Sébastien Lacour, and Paweł Balczyński. 2016. Programming interface device for

generating dedicated computer service programmes for using shared computer resources.

[95] Maozhen Li and Mark Baker. 2006. A Review of Grid Portal Technology. Springer, Berlin, 126–156. DOI:https://doi.

org/10.1007/1-84628-339-6_6

[96] John Linn. 1993. Generic security service application program interface. RFC 1538. https://doi.org/10.17487/RFC1508

[97] Robert R. Lipman and Judith E. Devaney. 1996. WebSubmit - Running supercomputer applications via the web.

Poster. In Proceedings of the Annual Conference on SuperComputing (SuperComputing’96).

[98] J. W. Long. 2013. Lorenz APIs and REST Services. DOI:https://doi.org/10.2172/1078546

[99] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin, Marlon Pierce, Chris Mattmann,

Raminder Singh, Thilina Gunarathne, Eran Chinthaka, Ross Gardler, Aleksander Slominski, Ate Douma, Srinath

Perera, and Sanjiva Weerawarana. 2011. Apache Airavata: A framework for distributed applications and computa-

tional workflows. In Proceedings of the 2011 ACM Workshop on Gateway Computing Environments (GCE’11). ACM,

New York, NY, 21–28. DOI:https://doi.org/10.1145/2110486.2110490

[100] Ryan P. McCormack, John E. Koontz, and Judith. Devaney. 1998. WebSubmit: Web-based Applications with Tcl. Tech-

nical Report 6165. U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Tech-

nology (NIST).

[101] Ryan P. McCormack, John E. Koontz, and Judith Devaney. 1999. Seamless computing with WebSubmit. Concurr.:

Pract. Exper. 11, 15 (1999), 949–963. DOI:https://doi.org/10.1002/(SICI)1096-9128(19991225)11:15〈949::AID-CPE462〉
3.0.CO;2-Y

[102] R. Menolascino, P. Cullen, P. Demestichas, S. Josselin, P. Kuonen, Y. Markoulidakis, M. Pizzaroso, and D.

Zeghlache. 1998. A realistic UMTS planning exercise. In Proceeding of the 3rd ACTS Mobile Communication Con-

ference (SUMMIT’98), Vol. 1. 157–162.

[103] M. A. Miller, W. Pfeiffer, and T. Schwartz. 2010. Creating the CIPRES science gateway for inference of large phylo-

genetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE’10). 1–8.

[104] Marco A. S. Netto, Rodrigo N. Calheiros, Eduardo R. Rodrigues, Renato L. F. Cunha, and Rajkumar Buyya. 2018.

HPC cloud for scientific and business applications: Taxonomy, vision, and research challenges. ACM Comput. Surv.

51, 1, Article 8 (Jan. 2018), 29 pages. DOI:https://doi.org/10.1145/3150224

[105] Bard Nicolas, Bolze Raphael, Caron Eddy, Desprez Frédéric, Heymann Michaël, Friedrich Anne, Moulinier Luc,

Nguyen Ngoc-Hoan, Poch Olivier, and Toursel Thierry. 2010. Décrypthon grid - Grid resources dedicated to neu-

romuscular disorders. In Proceedings of the Healthgrid Applications and Core Technologies (HealthGrid’10), Vol. 159.

124–133. DOI:https://doi.org/10.3233/978-1-60750-583-9-124

[106] Anwar Osseyran and Merle Giles. 2015. Industrial Applications of High-Performance Computing: Best Global Practices.

Chapman & Hall/CRC.

[107] Steven T. Peltier, Abel W. Lin, David Lee, Stephen Mock, Stephan Lamont, Tomas Molina, Mona Wong, Lu Dai,

Maryann E. Martone, and Mark H. Ellisman. 2003. The telescience portal for advanced tomography applications.

J. Parallel Distrib. Comput. 63, 5 (2003), 539–550. DOI:https://doi.org/10.1016/S0743-7315(03)00061-3

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

https://doi.org/10.1016/j.future.2017.11.033
https://doi.org/10.17487/rfc6749
https://doi.org/10.17487/RFC2307
https://doi.org/10.17487/RFC2307
https://doi.org/10.1145/2949550.2949644
https://doi.org/10.17487/rfc6750
https://doi.org/10.1002/cpe.3526
https://doi.org/10.1007/1-84628-339-6_6
https://doi.org/10.1007/1-84628-339-6_6
https://doi.org/10.17487/RFC1508
https://doi.org/10.2172/1078546
https://doi.org/10.1145/2110486.2110490
https://doi.org/10.1002/(SICI)1096-9128(19991225)11:15<949::AID-CPE462>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1096-9128(19991225)11:15<949::AID-CPE462>3.0.CO;2-Y
https://doi.org/10.1145/3150224
https://doi.org/10.3233/978-1-60750-583-9-124
https://doi.org/10.1016/S0743-7315(03)00061-3

5:36 P. Calegari et al.

[108] M. Pierce, S. Marru, L. Gunathilake, T. A. Kanewala, R. Singh, S. Wijeratne, C. Wimalasena, C. Herath, E. Chinthaka,

C. Mattmann, A. Slominski, and P. Tangchaisin. 2014. Apache Airavata: Design and directions of a science gateway

framework. In Proceedings of the 2014 6th International Workshop on Science Gateways. 48–54. DOI:https://doi.org/

10.1109/IWSG.2014.15

[109] Tim Polk and Sean Turner. 2011. Prohibiting Secure Sockets Layer (SSL) Version 2.0. RFC 6176. DOI:https://doi.org/

10.17487/RFC6176

[110] Andrew Prout, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vijay Gadepally, Matthew Hubbell,

Michael Houle, Michael Jones, Peter Michaleas, Lauren Milechin, Julie Mullen, Antonio Rosa, Siddharth Samsi,

Albert Reuther, and Jeremy Kepner. 2017. MIT SuperCloud portal workspace: Enabling HPC web application

deployment. In Proceedings of the 2017 IEEE High Performance Extreme Computing Conference (HPEC’17). 1–6.

DOI:https://doi.org/10.1109/HPEC.2017.8091097

[111] Dino Quintero, Scott Denham, Rodrigo Garcia da Silva, Alberto Ortiz, Aline Guedes Pinto, Atsumori Sasaki, Roger

Tucker, Joanna Wong, and Elsie Ramos. 2012. IBM Platform Computing Solutions. IBM Redbooks. 370 pages.

[112] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs. O’Reilly Media, Inc.

[113] Zebula Sampedro, Thomas Hauser, and Saurabh Sood. 2017. Sandstone HPC: A domain-general gateway for new

HPC users. In Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability,

Success and Impact (PEARC’17). ACM, New York, NY. DOI:https://doi.org/10.1145/3093338.3093360

[114] S. Sivagnanam, A. Majumdar, K. Yoshimoto, V. Astakhov, A. Bandrowski, M. E. Martone, and N. T. Carnevale.

2013. Introducing the neuroscience gateway. In Proceedings of the 5th International Workshop on Science Gateways

(IWSG’13), Vol. 993. CEUR-WS.org.

[115] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. 1988. Kerberos: An authentication service for open

network systems. In Proceedings of the USENIX Winter Conference. 191–202.

[116] Thomas Sterling, Matthew Anderson, and Maciej Brodowicz. 2017. High Performance Computing: Modern Systems

and Practices (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA.

[117] K. Suzuki, N. Uchida, H. Kuraishi, and J. Wagner. 2008. HPC solutions for the manufacturing industry. Fujitsu Sci.

Techn. J. 44, 4 (2008), 458–466.

[118] M. Thomas, S. Mock, and J. Boisseau. 2000. Development of web toolkits for computational science portals: The

NPACI HotPage. In Proceedings the 9th International Symposium on High-Performance Distributed Computing. 308–

309. DOI:https://doi.org/10.1109/HPDC.2000.868671

[119] Xiao Dong Wang and Rob Allan. 2007. HPC Portal: A Repository of portal resources. In Proceedings of the UK e-

Science All Hands Meeting, Simon J. Cox (Ed.). National e-Science Centre, 629–635.

[120] Xiaobo Yang, Mark Hayes, Karl Jenkins, and Stewart Cant. 2004. The Cambridge CFD Grid Portal for Large-Scale

Distributed CFD Applications. Springer, Berlin, 478–481. DOI:https://doi.org/10.1007/978-3-540-24685-5_70

Received October 2017; revised September 2018; accepted November 2018

ACM Transactions on the Web, Vol. 13, No. 1, Article 5. Publication date: February 2019.

https://doi.org/10.1109/IWSG.2014.15
https://doi.org/10.1109/IWSG.2014.15
https://doi.org/10.17487/RFC6176
https://doi.org/10.17487/RFC6176
https://doi.org/10.1109/HPEC.2017.8091097
https://doi.org/10.1145/3093338.3093360
CEUR-WS.org
https://doi.org/10.1109/HPDC.2000.868671
https://doi.org/10.1007/978-3-540-24685-5_70

