
 2025 Contributor Jam Info Sheet

 1

The Map of Open OnDemand
This guide attempts to layout structures and locations around much of the OOD
ecosystem.

These structures range from types such as GitHub repos, to ruby gems, and even to
components of OOD itself with respect to its codebase.

Pull Requests
You need to make a fork of the repo first:
o Generally, you are working off the latest branch when you begin your work.
o Edit on GitHub button also works too!

OOD Documentation
Open OnDemand's documentation sits in a public GitHub repo, hosted out of GH
pages.

The repo:
o https://github.com/OSC/ood-documentation
o Notice the repo has many branches but latest and develop are the 2 which matter

because they generate GitHub Pages which serve the documentation for the
community.

o Branch off latest and push to develop for features not implemented.
o For typos and fixes, push your branch to latest.

GH Pages:
o https://osc.github.io/ood-documentation/master/
o https://osc.github.io/ood-documentation/latest/
o https://osc.github.io/ood-documentation/develop/

Gems

A Ruby gem is just a library or module or bundle of code that we can install using the

ruby package manager bundler.

o The gems are listed in a project's Gemfile.

o After a bundler run a Gemfile.lock with version dependencies will also be

generated.

o bundler: => https://bundler.io/

• commands: https://bundler.io/docs.html

• bundler config set --local path vendor/bundle will be your friend later to

work on the development dashboard code and our local gems without polluting

the system gems.

OOD has 4 gems itself, some of which can be largely ignored, some which are quite

useful:

o ood_packaging: https://rubygems.org/gems/ood_packaging largely for OOD

internal team to help with packaging and distribution of OOD.

o ood_appkit: https://rubygems.org/gems/ood_appkit

• Provides an interface to work with OOD scientific apps, a dataroot for OOD apps

to write data to and common assets and helper objects.

o ood_support: https://rubygems.org/gems/ood_support

• Provides an interface to work with local OS installed on the HPC center's web

node. This gem is often useful for both OOD and OOD apps.

o ood_core: https://rubygems.org/gems/ood_core

• Provides Adapters for Schedulers, batch_connect Templates for the 3 types of

OOD apps, cluster interactivity, and Job interaction.

https://osc.github.io/ood-documentation/develop/
https://bundler.io/

 2025 Contributor Jam Info Sheet

 2

OOD Core (ood_core)

This is where the actual backend code to interact with your clusters or schedulers

resides.

Schedulers and Adapters

OOD provides adapters for the various HPC schedulers which can all be seen

here:
o …/lib/ood_core/job/adapters
o One thing to note is we have k8's adapter if you wish to use k8's as a scheduler.

o LinuxHost: This adapter is used to mimic a scheduler or resource manager, for

remote desktop or IDE's.

o SystemD: Community contribution.

3 Species of OOD App

OOD ships with 3 types of scientific apps:

1. basic:

o HTTP server

o e.g. Jupyter Notebook:

2. VNC:

o VNC server

o e.g. Qomsol, Remote Desktops

3. VNC_container:

o Less common, but it exists, VNC with container for sites that don't want to

install X11, XFCE, GNOME, etc. on their host.

All of these options are what you are setting when you select the template in your

submit.yml files.

Clusters

o The code to work with your clusters and the corresponding clusters config files.
o https://github.com/OSC/ood_core/tree/master/lib/ood_core
• Split out between 2 files

• the clusters.rb file is to handle the clusters config files.

• the clutser.rb file is to handle working with a cluster and its scheduler.

Dev Work for ood_core

In order for this to work we need to actually touch our Gemfile in the dashboard and

point to our local ood_core:

Gemfile
gem 'ood_core', :path=> '/full/path/to/checked/out/ood_core'

o You must issue the bin/setup command to rebuild your dashboard once you make

these local changes to your ood_core code.

OOD Monorepo

Open OnDemand follows the Mono-repo pattern. What this means is that OOD has

various applications and utilities all contained under the Ondemand namespace.
o https://github.com/OSC/ondemand
Notice we have our apps under this which leads to the dashboard and all the code

a user would be familiar interacting with, but at this top level we see much more.

o ood-portal-generator generates the NGINX and Apache configs given a valid

ood_portal.yml file.

o nginx_stage is used to manage the PUN for OOD.

o ood_auth_map connects the auth system to the web-node system users for OOD at

login.

o packaging is used to help with the distribution of OOD software.

o mod_ood_proxy is used to manage the proxy for OOD.

o dashboard is the frontend rails code most users and admins are familiar

interacting with.

https://github.com/OSC/ondemand

 2025 Contributor Jam Info Sheet

 3

OOD Dashboard Code Components

OOD has several components within the rails application code

◦ active_jobs ◦ myjobs
◦ bc_desktop ◦ projects
◦ dashboard ◦ shell
◦ file_editor ◦ system-status
◦ files

MVC Components

OOD uses the MVC pattern of web-development which is default in rails.

o Rails philosophy is convention over configuration.

We can see the OOD conventions by looking at the various Models, Controllers

and Views within the rails code itself.

Models
o …/apps/dashboard/app/models
o All the data OOD is aware of is defined in this directory.

Controllers
o …/apps/dashboard/app/controllers
o Here we see what data the model can present to a view.

Views
o …/apps/dashboard/app/views
o This directory can be daunting as it contains all code used to present the data

to users. As such, there can be a great many components to any piece of OOD.

o e.g. …/apps/dashboard/app/views/batch_connect

o While this is one of the more complex views to deal with, it gives a sense of how

complex some of these files can become.

o The goal for these when working is to try and make things modular and logical.

o Rails also uses the notion of partials to provide components of views.

o These files start with an underscore _my_partial.

Utilities

OOD also has some helpers for things like rclone, some rake tasks, and other

functionality all contained here:

- …/apps/dashboard/lib

batch_connect convention

One of the more powerful and useful abstractions to be aware of in OOD.
o …/apps/dashboard/app/models/batch_connect
o This model provides most data you see in a session card and when interacting

with forms.

o helpers are a big piece of the puzzle here:

• …/apps/dashboard/app/helpers

Code Changes
Now that we've had a tour at break-neck speed, let's make changes.

This portion assumes you have setup a dev dashboard on your OOD instance as

described at https://osc.github.io/ood-documentation/latest/how-tos/app-
development/enabling-development-mode.html

And that you have forked, cloned, and built your dashboard as described at
https://github.com/OSC/ondemand/blob/master/DEVELOPMENT.md#developing-
the-dashboard

Seeing Changes

Some changes will only require we reload the browser:

o If a config change is not taking effect after several reloads, try a PUN restart.

o Environment variable changes require a rebuild of the PUN with bin/setup

 2025 Contributor Jam Info Sheet

 4

Resources:
Contributing guide: https://github.com/OSC/ondemand/blob/master/CONTRIBUTING.md
Dev Dashboard Setup: https://github.com/OSC/ondemand/blob/master/DEVELOPMENT.md#developing-the-dashboard
Development guide: https://github.com/OSC/ondemand/blob/master/DEVELOPMENT.md
Dockerfile: https://github.com/OSC/ondemand/blob/master/Dockerfile
Security and Reporting: https://github.com/OSC/ondemand/blob/master/SECURITY.md
Code of Conduct: https://github.com/OSC/ondemand/blob/master/CODE_OF_CONDUCT.md
Forking repos in GitHub: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
Rails Guides: https://guides.rubyonrails.org/v7.1/
Rails MVC pattern: https://guides.rubyonrails.org/v7.1/getting_started.html#mvc-and-you
Rails view partials: https://osc.github.io/ood/documentation/latest/customizations.html#overriding-pages

GitHub Issue Pages

OOD Documentation: https://github.com/OSC/ood-documentation/issues

Open OnDemand: https://github.com/OSC/ondemand/issues

https://github.com/OSC/ondemand/blob/master/CODE_OF_CONDUCT.md
https://guides.rubyonrails.org/v7.1/
https://osc.github.io/ood/documentation/latest/customizations.html#overriding-pages

